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1 M.P. Krawtchouk

Krawtchouk polynomials are part of the

legacy of Mikhail Kravchuk.

A symposium in honor of his work and memory was held in

Kiev and an accompanying volume was produced that is

most highly recommended:

N. Virchenko, et al., eds.

Development of the Mathematical Ideas of

Mykhailo Kravchuk (Krawtchouk),

Shevchenko Scientific Society, Kyiv-New York, 2004.

Krawtchouk polynomials appear in diverse areas of mathematics

and science. Applications range from coding theory to image

processing.



2 Krawtchouk polynomials in one variable and the

binomial distribution

Krawtchouk polynomials may be defined via the generating

function

(1 + pv)N−x(1− qv)x =
∑

0≤k≤N

vk Kk(x,N)

The polynomialsKk(x,N) are orthogonal with respect to

the binomial distribution with parametersN, p. The

associated probabilities have the form

{(

N

0

)

qNp0, . . . ,

(

N

k

)

qN−kpk, . . . ,

(

N

N

)

q0pN

}



2.1 Matrix formulation

Setting





y1

y2



 =





1 p

1 −q









v1

v2



 we have

yN−x
1 yx

2 =
∑

k

vN−k
1 vk

2Φkx

and the expression of orthogonality takes the form

ΦBpΦ⊤ = D

where B is the diagonal matrix with entries the binomial

coefficients
(

N
k

)

, the matrix p is diagonal with entries the

corresponding probabilities qN−kpk and D is the diagonal

matrix of squared norms, standardized by D00 = 1.



3 Symmetric tensor powers

➧ Given a d× d matrix A, the action on the symmetric

tensor algebra of the underlying vector space defines its

second quantization or “symmetric representation”.

Introduce commuting variables v1, . . . , vd. Map

yi =
∑

j

Aijvj

We will use multi-indices, m = (m1, . . . , md), mi ≥ 0,

similarly for n.

The induced matrix, Ā, at level (homogeneous degree)

N =
∑

ni has entries Ānm determined by the expansion

yn = yn1

1 · · · ynd

d =
∑

m

Ānmx
m .

➧ The map A→ Ā is at each level a

multiplicative homomorphism ,

A1A2 = Ā1 Ā2 .



Multinomial matrix

We introduce the special matrix B which is a diagonal

matrix with multinomial coefficients as entries

Bnm = δnm

(

N

n

)

=
N !

n1!n2! · · ·nd!
.

B is the diagonal of the induced matrix at level N of the

all 1’s matrix.

If p is a diagonal matrix with entries pi > 0,
∑

i pi = 1,

then the diagonal matrix

Bp

yields the probabilities for the corresponding

multinomial distribution.



3.1 Transpose Lemma

The main lemma is the relation between the induced matrix

of A with that of its transpose,A⊤.

Transpose Lemma.

The induced matrices at each level satisfy

A⊤ = B−1Ā⊤B .

Proof: is accomplished by expanding the bilinear form

(
∑

i,j

uiAijvj)
N two ways, in terms of the induced matrix for

A, then that of A⊤, and comparing.



4 Construction of Krawtchouk polynomial systems

Start with U , an orthogonal (unitary) matrix.

Make all entries of first column positive by taking out phases

and form the probability matrix thus

p =











U2
00

. . .

U2
d0











=











p0

. . .

pd











row and column indices running from 0 to d.

Define

A =
1√
p
U
√
D

where D is diagonal with all positive entries on the diagonal.

The essential property satisfied by A is

A⊤pA = D .



4.1 Krawtchouk systems

In any degreeN , the induced matrix Ā satisfies

A⊤p̄Ā = D̄ .

Using the Transpose Lemma

BA⊤ = Ā⊤B

with B the special multinomial diagonal matrix yields

ΦBp̄ Φ⊤ = BD̄

the Krawtchouk matrix Φ being thus defined as Ā⊤.

The entries of Φ are the values of the multivariate

Krawtchouk polynomials thus determined.

BD̄ is the diagonal matrix of squared norms according to

the orthogonality of the Krawtchouk polynomial system.



� Example

Start with the orthogonal matrix U =





√
q
√
p

√
p −√q



 .

Factoring out the squares from the first column we have

p =





q 0

0 p



 and A =





1 p

1 −q



 .

We have

A⊤pA =





1 0

0 pq



 = D .

Take N = 4.



We have the Kravchuk matrix

Φ = Ā⊤ =
0

B

B

B

B

B

B

B

@

1 1 1 1 1

4p −q + 3p −2q + 2p −3q + p −4q

6p2 −3pq + 3p2 q2 − 4pq + p2 3q2 − 3pq 6q2

4p3 −3p2q + p3 2pq2 − 2p2q −q3 + 3pq2 −4q3

p4 −p3q p2q2 −pq3 q4

1

C

C

C

C

C

C

C

A

.

p becomes the induced matrix

p̄ =





















q4 0 0 0 0

0 q3p 0 0 0

0 0 q2p2 0 0

0 0 0 qp3 0

0 0 0 0 p4





















.

and the binomial coefficient matrix

B = diag(1, 4, 6, 4, 1).



5 Appell and Bernoulli systems

An Appell system of polynomials is a sequence {φn(x)}
such that

1. deg φn = n

2. ∂xφn = nφn−1 where ∂x =
d

dx
.

Introduce the raising operator

Rφn = φn+1

The pair ∂x, R satisfy the commutation relations

[∂x, R] = I

of the Heisenberg-Weyl algebra or

boson commutation relations.



➧ We take as generating function for the sequence {φn}

exz−tH(z) =

∞
∑

n=0

zn

n!
φn(x, t)

introducing an additional “time” variable, with
∫ ∞

−∞

ezx pt(dx) = etH(z)

for a convolution family of probability measures, pt.

Note that t may be running only through discrete values.

In the infinitely divisible case, we have the exponential martingale for the

corresponding process with independent increments.

➧ We extend to the multivariate case, taking ∂j = d/dxj ,

with Ri raising the index ni to ni + 1. In the exponent,

xz = x · z =
∑

xizi.



5.1 Canonical Appell system

Consider canonical raising and lowering (velocity ) operators

defined by

Vjφn = njφn−ej
and Riφn = φn+ei

satisfying

[Vj,Ri] = δij I

where V = (V1, . . . ,Vd) is given by a function V of

∂ = (∂1, . . . , ∂d), analytic in a neighborhood of 0 inC
n

,

with a locally analytic inverse.

The generating function takes the form

exz−tH(z) =
∑

n≥0

V (z)n

n!
φn(x, t)

with multi-index n! = n1! · · ·nd! .



5.2 Bernoulli systems

A Bernoulli system is a canonical Appell system such that,

for each t, the polynomials {φn(x, t)} form an

orthogonal system with respect to the measure pt.

To indicate this, write Jn for the corresponding canonical

Appell sequence.



Operator formulation

➨ The operator form of the generating function is the

exponential of the raising operators acting on the vacuum

state:

eV (z)RΩ = exz−tH(z) =
∑

n≥0

V (z)n

n!
Jn(x, t)

where the vacuum state Ω is here the constant

function equal to 1.

➨ Introducing the inverse function U(v), z = U(V (z)),

the generating function takes the form

evRΩ = exU(v)−tH(U(v)) =
∑

n≥0

vn

n!
Jn(x, t) .



6 Quantization

➧ Introduce the operatorsXj , multiplication by xj .

Start with

ez·XΩ = etH(z) eV (z)R Ω .

Differentiating with respect to zj we have

Xj = t
∂H

∂zj

+
∑

i

Ri

∂Vi

∂zj

These yield a family of commuting self-adjoint operators.

These are the observables of the system.

➧ As operators the variables zj act as the partial

differentiation operators, ∂j .



6.1 Specification of the system

• Express all operators in terms of the canonical raising

and velocity operatorsRi, Vj .

• Introduce the lowering operators {L1, . . . ,Ld}, where

Li is adjoint toRi.

• Study the Lie algebra generated by the raising and

lowering operators.

• ExpressXj in manifestly self-adjoint form.



7 Multinomial distribution. Notations.

Consider a process that at each time step does one of d+ 1

possibilities:

1. With probability p0, none of the levels 1 through d

increase.

2. With probability pi, 1 ≤ i ≤ d, level i increases by 1.

The corresponding moment generating function for one time

step is

p0 +
∑

i

pie
zi = 1 +

∑

i

pi(e
zi − 1)

= pµe
zµ

where we set z0 = 1.



➧ N -step process

The moment generating function for N steps is thus

(pµe
zµ)N

Notations

We use the following summation convention

➨ repeated Greek indices λ, µ are summed from 0 to d.

➨ Latin indices i, j, k, run from 1 to d and are not summed,

unless explicitly indicated.



8 Multivariate Krawtchouk polynomials as Bernoulli

systems

In degreeN , we have

(Av)x =
∑

n

vnΦnx =
∑

n

vnKn(x,N) .

More explicitly,

(A0µvµ)N−
P

xi(A1µvµ)x1 · · · (Adµvµ)xd

=
∑

vnKn(x,N) .

Recall that the first column of A consists of all 1’s, and set

α0 = A00 = 1, αi = A0i, 1 ≤ i ≤ d.

We get

(αµvµ)N
∏

i

(

Aiµvµ

αµvµ

)xi

= ex·U(v)−NH(U(v))

as the generating function for a Bernoulli system.



8.1 Identification of Bernoulli constituents

We have t = N and

➨

H(z) = log pµe
zµ

with the identification

pµe
zµ =

1

αµVµ

.

And U , the inverse to V , is given by

➨

Uk(v) = log
Akµvµ

αµvµ

.



8.2 Canonical velocity operators

Let

C = A−1 = D−1A⊤p .

Then we have

Vk =
1

pµezµ
Ckλe

zλ .

We find the Riccati partial differential equations

∂Vi

∂zj

=
(

Cij − pjVi

)

AjµVµ

for 1 ≤ i, j ≤ d.

➨ It is convenient to assign/adjoin projective coordinates,

v0 = V0 = 1, and we have previously set z0 = 0.



8.3 Observables

The relations

Xj = t
∂H

∂zj

+
∑

i

Ri

∂Vi

∂zj

give the observables

Xj =
(

t pj +
∑

i

Ri(Cij − pjVi)
)

AjµVµ

where we have identified the V ’s with the canonical velocity

operators, V ’s.



9 Coherent states. Berezin transform. Lie algebra

The generating function eV RΩ is a type of coherent state.

The inner product of coherent states has the form

Υ = 〈eBRΩ, eV RΩ〉 = φ(B1V1, . . . , BdVd)

by orthogonality.

With Li denoting the adjoint ofRi, we have

〈Ω, eBLeV RΩ〉 equal to the

vacuum expectation value of the group element eBLeV R.

Comparing with the Heisenberg-Weyl group

eBDeV X = eV XeBV eBD

we call Υ the Leibniz function of the system.



9.1 Recovering the lowering operators

Start with the observations

∂Υ

∂Vi

= 〈eBRΩ,Rie
V RΩ〉

∂Υ

∂Bi

= 〈eBRΩ,Lie
V RΩ〉 .

Thus we wish to express the partial derivatives ∂Υ
∂Bi

in terms

of Vi and ∂Υ
∂Vi

.

With the correspondence

∂Υ

∂Vi

←→ Ri

we will have found the lowering operators in terms of the

canonical raising and velocity operators.



9.2 Leibniz function for the Krawtchouk system

➨ We have the coherent state

eV RΩ = exU(V )−tH(U(V ))

Multiplying by eBRΩ and taking the expected value

produces the exponent t times

H(U(B)+U(V ))−H(U(B))−H(U(V )) = ψ(BV )

say. From the identifications of the Bernoulli constituents

found above, via the fundamental relation A⊤pA = D, we

find

ψ(BV ) = logBµDµVµ

where B0 = V0 = 1 and Di = Dii are the diagonal

entries of D.

➨ Hence, the Leibniz function

Υ = (BµDµVµ)t .



9.3 Lowering operators for the Krawtchouk system.

Lie algebra.

➧ We find the system of partial differential equations

1

Di

∂Υ

∂Bi

= tViΥ− Vi

∑

Vj

∂Υ

∂Vj

Hence the lowering operators

Li = Di

(

t−
d

∑

j=1

RjVj

)

Vi

➧ Introducing the d2 operators

ρij = [Li,Rj ]

plus the 2d raising and lowering operators yields a Lie

algebra of dimension d2 + 2d = (d+ 1)2 − 1. Thus, we

have a copy of sℓ(d+ 1).



10 Observables. Recurrence formulas.

Going back to the observables, we find Xj =

X

1≤i≤d

(Ri + Li)Cij − pj

X

1≤i≤d

RiVi +
X

1≤i≤d
1≤k≤d

CijAjkRiVk

the first and second terms are manifestly self-adjoint. The

last term can be expressed using the operators ρij . The

relations ρ∗ij = ρji provide self-adjointness.

The form of the Xj in terms of the canonical raising and

velocity operators

Xj =
(

t pj +
∑

i

Ri(Cij − pjVi)
)

AjµVµ

are, in fact, recurrence formulas for the multivariate

Krawtchouk polynomial system.
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