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1 Krawtchouk polynomials in one variable and the

binomial distribution

Krawtchouk polynomials may be defined via the generating

function

(1 + λpv)N−j(1 − λqv)j =
∑

0≤n≤N

vn kn(j, N)

The polynomials kn(j, N) are orthogonal with respect to

the binomial distribution with parameters N, p.

➧ They are part of the legacy of Mikhail Kravchuk

N. Virchenko, et al., eds.

Development of the Mathematical Ideas of Mykhailo

Kravchuk (Krawtchouk),

Shevchenko Scientific Society, Kyiv-New York, 2004.

Krawtchouk polynomials appear in diverse areas of mathematics

and science. Applications range from coding theory to image

processing.
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2 Symmetric tensor powers

Given a d × d matrix A, the action on the symmetric tensor

algebra of the underlying vector space defines its second

quantization or “symmetric representation”.

Introduce commuting variables x1, . . . , xd. Map

yi =
∑

j

Aijxj

We will use multi-indices, m = (m1, . . . , md), mi ≥ 0,

similarly for n.

The induced map at level N has matrix elements Ānm

determined by the expansion

yn = yn1

1 · · · ynd

d =
∑

m

Ānmxm .

The matrix Ā is often called the induced matrix at level N .

The induced matrix maps monomials of homogeneous

degree N to polynomials of homogeneous degree N .



2.1 Transpose Lemma

We introduce the special matrix B which is a diagonal

matrix with multinomial coefficients as entries

Bnm = δnm

(

N

n

)

=
N !

n1! n2! · · ·nd!
.

B is the diagonal of the induced matrix at level N of the

matrix consisting of all 1’s.

The level N is implicit according to context.

If p is a diagonal matrix with entries pi > 0,
∑

i pi = 1,

then the matrix

Bp

yields the probabilities for the corresponding

multinomial distribution.



The map A → Ā is at each level a multiplicative

homomorphism,

A1A2 = Ā1 Ā2 .

The main lemma is the relation between the induced matrix

of A with that of its transpose, A⊤.

Transpose Lemma.

The induced matrices at each level satisfy

A⊤ = B−1Ā⊤B .



3 Construction of Krawtchouk polynomial systems

Start with U , an orthogonal (unitary) matrix.

Make all entries of first column positive by taking out phases

and form the probability matrix thus

p =











U2
00

. . .

U2
d0











=











p0

. . .

pd











row and column indices running from 0 to d.

Define

A =
1√
p

U
√

D

where D is diagonal with all positive entries on the diagonal.

The essential property satisfied by A is

A⊤pA = D .



3.1 Krawtchouk systems

In any degree N , the induced matrix Ā satisfies

A⊤p̄Ā = D̄ .

Using the Transpose Lemma

BA⊤ = Ā⊤B

with B the special multinomial diagonal matrix yields

Φ Bp̄Φ⊤ = BD̄

the Krawtchouk matrix Φ being thus defined as Ā⊤.

The matrix elements, i. e. entries, of Φ are the values of the

multivariate Krawtchouk polynomials thus determined.

The matrix BD̄ is the diagonal matrix of squared norms

according to the orthogonality of the Krawtchouk polynomial

system.



4 Columns Theorem for symmetric powers

➧ MacMahon’s Master Theorem yields the diagonal

matrix elements of the symmetric tensor powers. Namely,

Let U = diag(u1, . . . , ud). Then, the coefficient of

um = u
m1

1
· · ·u

md

d
in the expansion of det(I − UA)−1 is the

diagonal matrix element Āmm.

➧ We present a variation that reproduces all of the matrix

elements.

Given a matrix A, with each column of A form a diagonal

matrix. Thus,

Λj = diag ((Aij))

where

(Λj)ii = Aij .



➨ Columns Theorem.

For any matrix A, let Λj be the diagonal matrix formed from

column j of A. Let

Λ =
∑

vjΛj .

Then the coefficient of vn in the level N induced matrix Λ̄ is

a diagonal matrix with entries the nth column of Ā.

Proof: Setting ~y = Λ~x, we have

yk = (
∑

vjAkj)xk ⇒ ym = (
∑

Āmnvn) xm .

A careful reading of the coefficients yields the result.

We may express this in the following useful way:

the diagonal entries of Λ̄ are generating functions for the

matrix elements of Ā .



4.1 Quantum observables

Define observables by

Xj = A−1ΛjA .

Let X =
∑

vjXj . Then

AX = ΛA

and the symmetric tensor powers satisfy

ĀX̄ = Λ̄Ā

the induced spectral formula for X̄ .



4.2 Quantum random walks

• Write, the superscript denoting the level N symmetric

tensor power,

(I + t
∑

Xj)
(N) =

∑

tmξm(N) .

So ξm(N) is the sum of all elementary symmetric tensors

of order N having exactly m factors not equal to the identity.

• For example, with a single Xj = X ,

ξ1(3) = X ⊗ I ⊗ I + I ⊗ X ⊗ I + I ⊗ I ⊗ X

the quantum random walk after three steps.

• Taking Λ0 = I , v0 = 1, and t for the remaining vj ’s in

the discussion above yields the spectral representation for

the quantum random walks and their extension to higher

levels.



4.3 Spectral representation as a recurrence formula

Now take A corresponding to a Krawtchouk system, with

Φ = Ā⊤. Then

X̄⊤Φ = ΦΛ̄

with X̄⊤ combining rows of Φ resulting in multiplying the

entries of a given row according to the spectrum.

For n = 1, this is a recurrence formula for the

corresponding orthogonal polynomials. Namely, it shows the

effect of multiplying φm, say, by φ1.

The higher powers of v yield higher-level recursion formulas.

They correspond to linearization formulas of the type

φnφm =
∑

ℓ

cℓ
mnφℓ .



5 Contexts

➧ Gaussian quadrature Let {φ0, . . . , φn} be an

orthogonal polynomial sequence with positive weight

function on an interval I of the real line. For Gaussian

quadrature,
∫

I

f ≈
∑

k

wkf(xk)

with xk the zeros of φn and appropriate weights wk . Let

Aij = φi−1(xj)

Then, with Γ the diagonal matrix of squared norms,

Γii = ‖φi‖2, we have

AWA⊤ = Γ

where W is the diagonal matrix with Wkk = wk .



➧ Association schemes Given an association scheme

with adjacency matrices Ai, the P and Q matrices

correspond to the decomposition of the algebra generated

by the Ai into an orthogonal direct sum, the entries Pij

being the corresponding eigenvalues. A basic result is the

relation

P⊤DµP = v Dv

where Dµ is the diagonal matrix of multiplicities and Dv the

diagonal matrix of valencies of the scheme.

Work of Delsarte, Bannai, . . . .



� Example

Start with the orthogonal matrix

U =





1/
√

2 1/
√

2

1/
√

2 −1/
√

2



 .

Factoring out the squares from the first column we have

p =





1/2 0

0 1/2



 and A =





1 1

1 −1



 .

The binomial coefficient matrix is B = diag(1, 4, 6, 4, 1).

We have the Kravchuk matrix

Φ = (A(4))⊤ =





















1 1 1 1 1

4 2 0 −2 −4

6 0 −2 0 6

4 −2 0 2 −4

1 −1 1 −1 1





















.

The entries of p become p̄ =
1

16
I5 .



Take the second column of A and form the diagonal matrix

Λ1 =





1 0

0 −1



 .

The corresponding observable is

X1 = A−1Λ1A =





0 1

1 0



 .

Let Λ = I + vΛ1 and X = I + v X1.

Then Λ(4) = diag
(

(1+v)4, (1+v)3(1−v), (1+v)2(1−v)2, (1+v)(1−v)3, (1−v)4
´

And X(4) =




















1 4v 6v2 4v3 v4

v 1 + 3v2 3v + 3v3 3v2 + v4 v3

v2 2v + 2v3 1 + 4v2 + v4 2v + 2v3 v2

v3 3v2 + v4 3v + 3v3 1 + 3v2 v

v4 4v3 6v2 4v 1























Now we have the spectrum via the coefficient of v in Λ(4)

Spec = diag(4, 2, 0,−2,−4)

and the coefficient of t in the transpose of X(4) give the

recurrence coefficients

Rec =





















0 1 0 0 0

4 0 2 0 0

0 3 0 3 0

0 0 2 0 4

0 0 0 1 0





















satisfying the relation

(Rec) Φ = Φ (Spec)

which is essentially the recurrence relation for the

corresponding Krawtchouk polynomials.



6 Further aspects

➧ We acknowledge the seminal paper of R. C. Griffiths

Orthogonal polynomials and multinomial distributions,

Australian J. Stat. 13(1971) 27–35.

➧ As Bernoulli systems , systems of orthogonal

polynomials related to representations of the Heisenberg

algebra, sl(n), etc., with probabilistic interpretations relating

to exponential martingales of associated processes.


