Multivariate Krawtchouk polynomials and a spectral theorem for symmetric tensor powers

Philip Feinsilver

Southern Illinois University

Carbondale, Illinois USA 62901

Multivariate Krawtchouk polynomials are constructed.
A spectral theorem for associated quantum observables is presented.
$33^{\text {nd }}$ International Conference
Quantum Probability and Related Topics
CIRM, Luminy, France
1 - 5 October 2012

1 Krawtchouk polynomials in one variable and the binomial distribution

Krawtchouk polynomials may be defined via the generating function

$$
(1+\lambda p v)^{N-j}(1-\lambda q v)^{j}=\sum_{0 \leq n \leq N} v^{n} k_{n}(j, N)
$$

The polynomials $k_{n}(j, N)$ are orthogonal with respect to the binomial distribution with parameters N, p.

- They are part of the legacy of Mikhail Kravchuk
N. Virchenko, et al., eds.

Development of the Mathematical Ideas of Mykhailo Kravchuk (Krawtchouk),
Shevchenko Scientific Society, Kyiv-New York, 2004.

Krawtchouk polynomials appear in diverse areas of mathematics and science. Applications range from coding theory to image processing.

Work with René Schott

- N. Botros, J. Yang, P. Feinsilver, and R. Schott, Hardware Realization of Krawtchouk Transform using VHDL Modeling and FPGAs, IEEE Transactions on Industrial Electronics, 49 6 (2002)1306-1312.
- Ph. Feinsilver and R. Schott, Finite-Dimensional Calculus, Journal of Physics A: Math.Theor., 42:375214, 2009.
- Ph. Feinsilver and R. Schott, On Krawtchouk Transforms, Intelligent Computer Mathematics, proceedings 10th Intl. Conf. AISC 2010, LNAI 6167, 64-75.
- F\&S, Algebraic Structures and Operator Calculus, 3 vols., 1993-1995.

2 Symmetric tensor powers

Given a $d \times d$ matrix A, the action on the symmetric tensor algebra of the underlying vector space defines its second quantization or "symmetric representation".

Introduce commuting variables x_{1}, \ldots, x_{d}. Map

$$
y_{i}=\sum_{j} A_{i j} x_{j}
$$

We will use multi-indices, $m=\left(m_{1}, \ldots, m_{d}\right), m_{i} \geq 0$, similarly for n.

The induced map at level N has matrix elements $\bar{A}_{n m}$ determined by the expansion

$$
y^{n}=y_{1}^{n_{1}} \cdots y_{d}^{n_{d}}=\sum_{m} \bar{A}_{n m} x^{m}
$$

The matrix \bar{A} is often called the induced matrix at level N.
The induced matrix maps monomials of homogeneous degree N to polynomials of homogeneous degree N.

2.1 Transpose Lemma

We introduce the special matrix B which is a diagonal matrix with multinomial coefficients as entries

$$
B_{n m}=\delta_{n m}\binom{N}{n}=\frac{N!}{n_{1}!n_{2}!\cdots n_{d}!}
$$

B is the diagonal of the induced matrix at level N of the matrix consisting of all 1's.
The level N is implicit according to context.
If p is a diagonal matrix with entries $p_{i}>0, \sum_{i} p_{i}=1$, then the matrix

$$
B \bar{p}
$$

yields the probabilities for the corresponding multinomial distribution.

The map $A \rightarrow \bar{A}$ is at each level a multiplicative homomorphism,

$$
\overline{A_{1} A_{2}}=\bar{A}_{1} \bar{A}_{2}
$$

The main lemma is the relation between the induced matrix of A with that of its transpose, A^{\top}.

Transpose Lemma.

The induced matrices at each level satisfy

$$
\overline{A^{\top}}=B^{-1} \bar{A}^{\top} B
$$

3 Construction of Krawtchouk polynomial systems

Start with U, an orthogonal (unitary) matrix.
Make all entries of first column positive by taking out phases and form the probability matrix thus

$$
p=\left(\begin{array}{ccc}
U_{00}^{2} & & \\
& \ddots & \\
& & U_{d 0}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
p_{0} & & \\
& \ddots & \\
& & p_{d}
\end{array}\right)
$$

row and column indices running from 0 to d.
Define

$$
A=\frac{1}{\sqrt{p}} U \sqrt{D}
$$

where D is diagonal with all positive entries on the diagonal. The essential property satisfied by A is

$$
A^{\top} p A=D
$$

3.1 Krawtchouk systems

In any degree N, the induced matrix \bar{A} satisfies

$$
\overline{A^{\top}} \bar{p} \bar{A}=\bar{D} .
$$

Using the Transpose Lemma

$$
B \overline{A^{\top}}=\bar{A}^{\top} B
$$

with B the special multinomial diagonal matrix yields

$$
\Phi B \bar{p} \Phi^{\top}=B \bar{D}
$$

the Krawtchouk matrix Φ being thus defined as \bar{A}^{\top}.
The matrix elements, i. e. entries, of Φ are the values of the multivariate Krawtchouk polynomials thus determined.

The matrix $B \bar{D}$ is the diagonal matrix of squared norms according to the orthogonality of the Krawtchouk polynomial system.

4 Columns Theorem for symmetric powers

- MacMahon's Master Theorem yields the diagonal matrix elements of the symmetric tensor powers. Namely,

Let $U=\operatorname{diag}\left(u_{1}, \ldots, u_{d}\right)$. Then, the coefficient of $u^{m}=u_{1}^{m_{1}} \cdots u_{d}^{m_{d}}$ in the expansion of $\operatorname{det}(I-U A)^{-1}$ is the diagonal matrix element $\bar{A}_{m m}$.

- We present a variation that reproduces all of the matrix elements.

Given a matrix A, with each column of A form a diagonal matrix. Thus,

$$
\Lambda_{j}=\operatorname{diag}\left(\left(A_{i j}\right)\right)
$$

where

$$
\left(\Lambda_{j}\right)_{i i}=A_{i j}
$$

- Columns Theorem.

For any matrix A, let Λ_{j} be the diagonal matrix formed from column j of A. Let

$$
\Lambda=\sum v_{j} \Lambda_{j}
$$

Then the coefficient of v^{n} in the level N induced matrix $\bar{\Lambda}$ is a diagonal matrix with entries the $n^{\text {th }}$ column of \bar{A}.

Proof: Setting $\vec{y}=\Lambda \vec{x}$, we have

$$
y_{k}=\left(\sum v_{j} A_{k j}\right) x_{k} \Rightarrow y^{m}=\left(\sum \bar{A}_{m n} v^{n}\right) x^{m}
$$

A careful reading of the coefficients yields the result.

We may express this in the following useful way:
the diagonal entries of $\bar{\Lambda}$ are generating functions for the matrix elements of \bar{A}.

4.1 Quantum observables

Define observables by

$$
X_{j}=A^{-1} \Lambda_{j} A
$$

Let $X=\sum v_{j} X_{j}$. Then

$$
A X=\Lambda A
$$

and the symmetric tensor powers satisfy

$$
\bar{A} \bar{X}=\bar{\Lambda} \bar{A}
$$

the induced spectral formula for \bar{X}.

4.2 Quantum random walks

- Write, the superscript denoting the level N symmetric tensor power,

$$
\left(I+t \sum X_{j}\right)^{(N)}=\sum t^{m} \xi_{m}(N)
$$

So $\xi_{m}(N)$ is the sum of all elementary symmetric tensors of order N having exactly m factors not equal to the identity.

- For example, with a single $X_{j}=X$,

$$
\xi_{1}(3)=X \otimes I \otimes I+I \otimes X \otimes I+I \otimes I \otimes X
$$

the quantum random walk after three steps.

- Taking $\Lambda_{0}=I, v_{0}=1$, and t for the remaining v_{j} 's in the discussion above yields the spectral representation for the quantum random walks and their extension to higher levels.

4.3 Spectral representation as a recurrence formula

Now take A corresponding to a Krawtchouk system, with $\Phi=\bar{A}^{\top}$. Then

$$
\bar{X}^{\top} \Phi=\Phi \bar{\Lambda}
$$

with \bar{X}^{\top} combining rows of Φ resulting in multiplying the entries of a given row according to the spectrum.

For $n=1$, this is a recurrence formula for the corresponding orthogonal polynomials. Namely, it shows the effect of multiplying ϕ_{m}, say, by ϕ_{1}.

The higher powers of v yield higher-level recursion formulas.
They correspond to linearization formulas of the type

$$
\phi_{n} \phi_{m}=\sum_{\ell} c_{m n}^{\ell} \phi_{\ell}
$$

5 Contexts

- Gaussian quadrature Let $\left\{\phi_{0}, \ldots, \phi_{n}\right\}$ be an orthogonal polynomial sequence with positive weight function on an interval I of the real line. For Gaussian quadrature,

$$
\int_{\mathrm{I}} f \approx \sum_{k} w_{k} f\left(x_{k}\right)
$$

with x_{k} the zeros of ϕ_{n} and appropriate weights w_{k}. Let

$$
A_{i j}=\phi_{i-1}\left(x_{j}\right)
$$

Then, with Γ the diagonal matrix of squared norms, $\Gamma_{i i}=\left\|\phi_{i}\right\|^{2}$, we have

$$
A W A^{\top}=\Gamma
$$

where W is the diagonal matrix with $W_{k k}=w_{k}$.

- Association schemes Given an association scheme with adjacency matrices A_{i}, the P and Q matrices correspond to the decomposition of the algebra generated by the A_{i} into an orthogonal direct sum, the entries $P_{i j}$ being the corresponding eigenvalues. A basic result is the relation

$$
P^{\top} D_{\mu} P=v D_{v}
$$

where D_{μ} is the diagonal matrix of multiplicities and D_{v} the diagonal matrix of valencies of the scheme.

Work of Delsarte, Bannai,
\therefore Example
Start with the orthogonal matrix
$U=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)$.
Factoring out the squares from the first column we have

$$
p=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

The binomial coefficient matrix is $B=\operatorname{diag}(1,4,6,4,1)$. We have the Kravchuk matrix

$$
\Phi=\left(A^{(4)}\right)^{\top}=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
4 & 2 & 0 & -2 & -4 \\
6 & 0 & -2 & 0 & 6 \\
4 & -2 & 0 & 2 & -4 \\
1 & -1 & 1 & -1 & 1
\end{array}\right)
$$

The entries of p become $\bar{p}=\frac{1}{16} I_{5}$.

Take the second column of A and form the diagonal matrix

$$
\Lambda_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The corresponding observable is

$$
X_{1}=A^{-1} \Lambda_{1} A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Let $\Lambda=I+v \Lambda_{1} \quad$ and $\quad X=I+v X_{1}$.
Then $\Lambda^{(4)}=\operatorname{diag}($
$\left.(1+v)^{4},(1+v)^{3}(1-v),(1+v)^{2}(1-v)^{2},(1+v)(1-v)^{3},(1-v)^{4}\right)$

And $X^{(4)}=$

$$
\left(\begin{array}{ccccc}
1 & 4 v & 6 v^{2} & 4 v^{3} & v^{4} \\
v & 1+3 v^{2} & 3 v+3 v^{3} & 3 v^{2}+v^{4} & v^{3} \\
v^{2} & 2 v+2 v^{3} & 1+4 v^{2}+v^{4} & 2 v+2 v^{3} & v^{2} \\
v^{3} & 3 v^{2}+v^{4} & 3 v+3 v^{3} & 1+3 v^{2} & v \\
v^{4} & 4 v^{3} & 6 v^{2} & 4 v & 1
\end{array}\right)
$$

Now we have the spectrum via the coefficient of v in $\Lambda^{(4)}$

$$
\text { Spec }=\operatorname{diag}(4,2,0,-2,-4)
$$

and the coefficient of t in the transpose of $X^{(4)}$ give the recurrence coefficients

$$
\operatorname{Rec}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
4 & 0 & 2 & 0 & 0 \\
0 & 3 & 0 & 3 & 0 \\
0 & 0 & 2 & 0 & 4 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

satisfying the relation

$$
(\mathrm{Rec}) \Phi=\Phi(\mathrm{Spec})
$$

which is essentially the recurrence relation for the corresponding Krawtchouk polynomials.

6 Further aspects

We acknowledge the seminal paper of R. C. Griffiths Orthogonal polynomials and multinomial distributions, Australian J. Stat. 13(1971) 27-35.

- As Bernoulli systems, systems of orthogonal polynomials related to representations of the Heisenberg algebra, $\mathfrak{s l}(n)$, etc., with probabilistic interpretations relating to exponential martingales of associated processes.

