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1 What are Zeons?

➨ Zeons appear in a variety of contexts, but they are often

not recognized nor explicitly acknowledged.

Definition 1.1 A set of commuting elements, {xi}, in an

algebra, that individually square to zero are called zeons.

• Orthofermion generators
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➧ all products are zero

• Even part of Grassmann algebra generated by ei,

xij = ei ∧ ej

➧ there are many relations among the generators, including

zero products like x12x23 = 0, etc.



2 Standard zeon algebra

• Start with a vector space V of dimension n, with basis

{ei}. A basis for a standard zeon algebra is

e1, . . . , ei, . . . , eiej , . . . , eI, . . . , e1e2 · · · en

indexed by subsets I of {1, 2, . . . , n}.

➧ Construction Start with V(1), the algebra of

dual numbers with basis 1 and e, where e2 = 0.

Continuing, for n ≥ 2, set

V(n) = V(1) ⊗ · · · ⊗ V(1)

n copies. Then define

ei = 1⊗ · · · ⊗ e⊗ · · · ⊗ 1

with e in the ith place.

• These generate a standard zeon algebra.



2.1 sl(2)

• The matrix of e is





0 0

1 0



 = R

• For a ∗-algebra , introduce L =





0 1

0 0





• With H =





1 0

0 −1



 we have

[L,R] = H , [R,H] = 2R , [H,L] = 2L

an sl(2) standard triple.



3 Representations of semigroups

• Start with a finite set S and consider the semigroup of

functions S → S under composition.

• Associate to each f :S → S, the matrix Xf with

(Xf )ij = δf(i)j

so the entry in row i is 1 exactly in column f(i).

• Composing on the right i → if → ifg = g(f(i)), we

have

XfXg = Xfg

a representation of the semigroup.



➧ Standard constructions are

• Tensor powers

• Symmetric tensor powers a.k.a. boson Fock space

• Grassmann representations.

The first two approaches work. On the other hand, the

representations on Grassmann algebra introduce minus

signs, so that the matrices no longer represent functions.



3.1 Representations via zeons

➧ For fixed level ℓ, 1 ≤ ℓ ≤ n, we have the induced action

on the basis eI, |I| = ℓ

((Xf )
∨ℓ)IJ = 1 if f(I) = J, with |I| = |J| = ℓ

where row I has all zeros if |f(I)| < |I|.

➧ The matrix elements are permanents of the

corresponding submatrices, with rows indexed by I and

columns by J.
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where rows and columns at level ℓ are labelled using

dictionary ordering.



For each ℓ, we have a representation

(Xf )
∨ℓ(Xg)

∨ℓ = (Xfg)
∨ℓ

These representations can be used to provide information

about the asymptotic behavior of certain random walks on

semigroups.

• Application to Markov chains

For a stochastic matrix A that generates a Markov chain

with no transient states, the second zeon power A∨2 allows

you to determine ergodicity of the chain. For example if the

chain is irreducible, periodic, one can immediately determine

the periodic classes from the fixed points of A∨2.



4 Representations of sl(2) on the Boolean lattice

• Fix n. Let B = {I: I ⊂ {1, 2, . . . , n} } with

Bℓ = {I ∈ B: |I| = ℓ}

denoting the ℓth layer, for 0 ≤ ℓ ≤ n. Define the inclusion

operator with rows and columns indexed by elements of B,

TIJ = 1 if I ⊃ J, |J| = |I| − 1

and T ∗ its transpose.
➨ T is the sum

∑

i

êi where êi is the operator of

multiplication by ei in the standard zeon algebra. ➨

• Define the layer operator L by

LIJ = |I| δIJ = ℓ if |I| = ℓ, I = J

Then we have the commutator

U = [T ∗, T ] = nI − 2L

and (T, T ∗, U) are a standard sl(2) triple.



4.1 Boolean incidence matrix

➨ T is the inclusion operator for sets differing by 1 element.

Then T k/k! is the inclusion operator for sets differing by k

elements. Thus

(eT )IJ = 1 if I ⊃ J

and

(eT
∗

)IJ = 1 if I ⊂ J

the incidence matrix for the Boolean lattice.

➧ We immediately have the Moebius function for the Boolean

lattice: e−T∗

.



4.2 Group elements I

• Working on B we find the matrices for group elements

generated by elements of the Lie algebra. First, we have

(etT etT
∗

)IJ = t|I∆ J| (1 + t2)|I∩J|

with ∆ denoting symmetric difference.

• Restricting to layer ℓ, we consider the Johnson metric

distJS(I, J) = |I \ J| = |J \ I| = 1
2 |I∆J|

• Setting t = 1, on layer ℓ, we get

2|I∩J| = 2ℓ−j JSnℓj

where JS denotes the indicator matrix for the Johnson

metric on layer ℓ.

➧ So eT eT
∗

has a binary expansion with coefficients the

matrices for the Johnson metric.



� Example for n = 3
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The blocks along the diagonal are the matrices of the

restrictions at each level 0 ≤ ℓ ≤ 3.



4.3 Group elements II

For the general group elements we have

(esT uL etT
∗

)IJ = s|I\J|(u+ st)|I∩J|t|J\I|

This is illustrated by the following diagram

ℓ− k

k − i

m− k

i

I J

K

Figure 1:
∑

i (
k

i) s
ℓ−k+i uk−i tm−k+i=sℓ−k(u+st)ktm−k



5 Further aspects

• One can find the complete decomposition into irreducible

representations of the Lie algebra, providing an orthogonal

basis of states for the Boolean system.

• The Leibniz Rule for moving the lowering operator past

the raising operator can be computed using the action on the

Boolean lattice.

• The exponential formula for a group element in

coordinates of the first kind can be found using zeon algebra.

• The relation with Krawtchouk polynomials and the

Hamming scheme follows from the exponential formula.

• Further connections with the Johnson scheme can be

found, including finding the spectrum of the Johnson

matrices.



6 Connections

• Meyer’s discussion of the “toy Fock space” in his lecture

notes on Quantum Probability are another way of

approaching the Boolean action.

• Sirugue, Sirugue-Collin, et al. , have discussed many

aspects in terms of spin systems.

• Ceccherini-Silberstein, et al. in their book Harmonic

Analysis on Finite Groups present an approach focussing on

the symmetric group.

• Proctor has shown how the Sperner property of a poset is

equivalent to its carrying a representation of sl(2).

• Accardi-Bach have discussed limit theorems for Bernoulli

processes which is closely related to this approach.


