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Consider a semigroup generated by matrices associated with an

edge-coloring of a strongly connected, aperiodic digraph. We call the

semigroup Lie-solvable if the Lie algebra generated by its elements is

solvable. We show that if the semigroup is Lie-solvable then its kernel is a

right group. Next, we analyze the Lie algebras generated by the kernel. The

Lie structure of a subalgebra generated by two idempotents is completely

described. Finally, we discuss an infinite class of examples that are shown

to always produce strongly connected aperiodic digraphs.
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1 Semigroups and kernels

Coloring: G = (V, E) is a digraph of uniform outdegree d.

Any labeling of the edges with members of A, where

|A| = d, such that each edge issuing from any given vertex

has a distinct label is a coloring of the digraph.

Any such coloring uniquely determines an automaton

δ : V × A → V , where Ra(v) = va is the terminal point

of the directed edge with initial point v and label a.

Coloring semigroup: identifying the coloring with the set of

transformations C = {Ra : a ∈ A}, we refer to the

semigroup S = 〈C〉, generated by C, as the coloring

semigroup for the given labelling.

Kernel: Any finite transformation semigroup S has a

minimal ideal or kernel, which consists of the elements of

minimal rank (see [5]). This common minimal rank is called

the rank of the kernel .



Synchronizing instruction: Any transformation of rank one.

Rees Product: Let S be a coloring semigroup of a strongly

connected digraph with kernel K . Then K is of the form

X × G × Y relative to a minimal idempotent e0, say,

X = E(Ke0) , G = e0Ke0 , Y = E(e0K)

E(·) denoting “idempotents of”, with product

(x1, g1, y1)(x2, g2, y2) := (x1, g1(y1x2)g2, y2)

Sandwich function:

φ: Y × X → G , φ(y, x) = yx

is fundamental in the structure of K . Recall that if

φ(y, x) = e0 for all (y, x) ∈ Y ×X , then X ×G× Y is

called a direct product.



Right group: If X = E(Ke0) = {e0}, a single

idempotent, K is a right group.

When a coloring semigroup has a synchronizing (rank one)

instruction, K can easily shown to be a right group.

The importance of right groups in the context of the road

coloring problem has been shown in recent papers [2, 3] and

our work continues to explore their rôle.

It follows from the results in [3] that if any coloring

semigroup of a strongly connected aperiodic digraph

generates a kernel that is a right group, then the digraph has

some coloring semigroup that contains a synchronizing

instruction.
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2 Solvability and right groups

Solvable Lie algebra: The main property of a solvable

Lie algebra that we are using here is Lie’s Theorem to the

effect that (over an algebraically closed field) a solvable Lie

algebra of matrices can be simultaneously

upper-triangularized. Especially, Radjavi’s Theorem on

permutable traces is part of the inspiration behind the proof.

In general, we denote by g(·) the Lie algebra generated by

transformations from a given set.

L = g(C): generated by the transformations in C, is a

subalgebra of g(S) and is our main object of interest.

The main feature is that the generators C are simultaneously

upper-triangularizable if and only if L is solvable.

In that case, we call the graph Lie-solvable.



2.1 Solvability implies Right Group

Lemma 2.1 If L is solvable, then the kernel K is isomorphic

to a Rees product semigroup that is a direct product.

Theorem 2.2 If L is solvable, then the kernel K is a right

group.

Combining this with the results of [3], we have

Corollary 2.3 If the Lie algebra L of a coloring semigroup is

solvable, then there exists a coloring semigroup of the graph

that contains a synchronizing instruction. In other words,

the road coloring conjecture holds

for Lie-solvable graphs



3 Lie algebra generated by idempotents

g = g(x, y): where x and y are two idempotents

u = x − y and v = 1 − (x + y)

satisfy the basic identities

uv + vu = 0 and u
2 + v

2 = 1

Lie product:

a × b = (ab − ba)/2 = (1/2) [a, b].

Thus, u × v = uv = −v × u.

Center: of the associative algebra A(1, x, y) is generated

by {1, u2, v2}.



4 Lie algebra of a completely simple semigroup

Take two idempotents from a finite, completely simple

semigroup call them e and f .

We assume that they have neither the same partition nor the

same range.

We know that ef is in the local group with the same partition

as e and the same range as f .

Order: Let p be the order of ef in that group so that

(ef)p is an idempotent.

ef and fe have the same order (in their respective groups)

We can find a spanning set, generic basis, of 3p + 1

elements.



4.1 Group generated by v’s

v is invertible: In fact, we have

Denote idempotents e′ = (ef)p and f ′ = (fe)p. Then

v(e, f) = 1 − e − f and v(e′, f ′) = 1 − e′ − f ′ satisfy

v(e, f)v(e′, f ′) = 1, i.e.,

v(e, f)−1 = v(e′, f ′)

Proof: We have the 2 × 2 array

R1 R2

π1 f ′ f

π2 e e′

(1)

Recall that the columns form left-zero semigroups and the

rows, right-zero semigroups. Now, multiplying out

(1 − e − f)(1 − e′ − f ′) yields

1 − e′ − f ′ − e + ee′ + ef ′ − f + fe′ + ff ′

which simplifies down to 1 using the zero-properties just

noted.



4.2 Levi-Malcev decomposition and oscillator

subalgebra

Diagonalize the linear map v0× acting on g(e, f)

The Levi-Malcev decomposition g(e, f) = G ⊕ I is

completely described by the root-space decomposition:

the semisimple part G

is isomorphic to a direct sum of p − 1 copies of sl(2)

the solvable radical I

corresponds to eigenvalues ±1. Generically it is the

four-dimensional oscillator algebra, osc.

Lie-solvable kernels and right groups

L = g(C): If the kernel is not a right group, then we can

find e and f such that ef is not itself an idempotent, so that

p > 1.

Thus G is nontrivial and L is not solvable.

In other words, L solvable implies that the kernel is a right

group.

For right groups g is a two-step solvable Lie algebra.



5 Examples

An interesting class of examples have a nontrivial

sandwich function guaranteed for at least one coloring.

Let V = {1, 2, . . . , 2k} for any integer k ≥ 2.

R1 = {1, 3, . . . , 2k − 1} and R2 = {2, 4, . . . , 2k}.

π1 = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}} is compatible

with both R1 and R2.

In “transformation notation,”

r = [3, 3, 5, 5, . . . , 2k − 1, 2k − 1, 1, 1]

Let (i1, i2, . . . , ik−1) be a permutation of the even

integers {4, . . . , 2k} and define

b = [2, 4, i1, 6, i2, . . . , 2k, ik−1, 2]

π2 is the partition induced from b.

It can be shown that these correspond to strongly

connected, aperiodic digraphs. Furthermore, noting that this

class of digraphs has uniform indegree as well as uniform

outdegree it follows from Kari [7] that the road coloring

conjecture is true for this class of digraphs.



5.1 Examples

There are two cases of the above construction for k = 3.

We will look at the associated kernel and some recolorings.

Notation. To denote the structure of a Lie algebra g with

Levi decomposition G ⊕ I , we use the notation

g ∼ d⊕ n/n1

where d = dimG, n = dimI and n1 = dim[I, I].

•/n denotes a solvable algebra g of dimension n + 1, with

[g,g] n-dimensional abelian.

For example, •/1 ≈ aff(2).



Example 1 r = [3, 3, 5, 5, 1, 1], b = [2, 4, 4, 6, 6, 2]

The kernel has the shape

135 246

12|34|56 e1 e2

16|23|45 e3 e4

Groups are ≈ C3, the cyclic group of order 3, so p = 3.

L = K ∼ 6 ⊕ 2/1

i.e., G isomorphic to two copies of sl(2) and I ≈ aff(2).



Recolor to r = [3, 3, 5, 6, 6, 2], b = [2, 4, 4, 5, 1, 1], now

L ∼ 8⊕ 4/2, and K ∼ 8 ⊕ •/2.

The kernel has the shape

14 25 36

123|456 e1 e2 e3

126|345 e4 e5 e6

156|234 e7 e8 e9

Groups are C2’s.

Denote, e.g., [1 × 5] the block of four cells with diagonal

containing e1 and e5, with g(1 × 5) the corresponding Lie

algebra.

Then [1 × 5] is a direct product, p = 1, i.e., e1e5 = e2,

with g(1 × 5) an oscillator algebra.

While [1 × 6] has p = 2, with

g(1 × 6) ∼ 3⊕ •/1 ≈ sl(2) ⊕ aff(2).



Example 2. r = [3, 3, 5, 5, 1, 1], b = [2, 4, 6, 6, 4, 2]

The kernel has the shape

135 246

12|34|56 e1 e2

16|25|34 e3 e4

The local groups are now S3 — symmetric groups.

Here p = 2,

L = K ∼ 8 ⊕ •/4, with 8 ≈ sl(3).

The Lie algebra

g(1 × 4) ∼ 3 ⊕ •/1 ≈ sl(2) ⊕ aff(2)

Recoloring, r = [3, 4, 6, 5, 4, 1], b = [2, 3, 5, 6, 1, 2].

The kernel is a right group, but L ∼ 8⊕ 13/11 is not

solvable, the 8 ≈ sl(3). The kernel has the shape, only

one partition,

12 14 15 32 34 35 62 64 65

136|245 e1 e2 e3 e4 e5 e6 e7 e8 e9

The Lie algebra generated by the idempotents g ∼ •/4,

with K ∼ 0 ⊕ 10/8.



6 Conclusion

Solvability:

What is an equivalent graph-theoretic condition?

Lie algebras: warrant further study in this context

Covering group: generated by the v-operators. What is its

relation to the group G = e0Ke0 of the Rees product as

well as the subgroup within G generated by the sandwich

function?
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