Vector fields,
 Lagrange Inversion, and Random Walks

Philip Feinsilver

Southern Illinois University

Carbondale, IL

We indicate the relation between vector fields and operator calculus - dual vector fields. After presenting the approach to Lagrange inversion in general in this context, we specialize to the positive definite case and give a formula for the coefficients of the inverse function in terms of an associated random walk.

Probability Theory on Groups and Related Structures
Budapest, Hungary
August 2, 2004

1 Classical Lagrange Inversion

If $y=f(z)$ is analytic around z_{0} with $y_{0}=f\left(z_{0}\right)$, $f^{\prime}\left(z_{0}\right) \neq 0$, then for analytic g, with $z=f^{-1}(y)$,

$$
\begin{aligned}
& g(z)=g\left(z_{0}\right) \\
& +\left.\sum_{n=1}^{\infty} \frac{\left(y-y_{0}\right)^{n}}{n!}\left(\frac{d}{d z}\right)^{n-1}\left(g^{\prime}(z)\left[\frac{z-z_{0}}{f(z)-f\left(z_{0}\right)}\right]^{n}\right)\right|_{z=z_{0}}
\end{aligned}
$$

Note that the expression involving the $(n-1)^{\text {st }}$ derivative is the coefficient of $\left(z-z_{0}\right)^{n-1}$ in the expansion of $\left[\left(z-z_{0}\right) /\left(f(z)-f\left(z_{0}\right)\right)\right]^{n}$.

From now on we are in a neighborhood of the origin in \mathbf{C}. We take a "normalized" analytic function, $V(z)$, with $V(0)=0, V^{\prime}(0)=1$. Its inverse is U, i.e., $v=V(z) \Leftrightarrow z=U(v)$. The Lagrange formula may be written
$g(U)=g(0)$

$$
+\left.\sum_{n=1}^{\infty} \frac{v^{n}}{n!}\left(\frac{d}{d U}\right)^{n-1}\left(g^{\prime}(U)\left[\frac{U}{V(U)}\right]^{n}\right)\right|_{U=0}
$$

We will derive a formula for $g(U)=\exp (x U)$. In this case, the expansion takes the form

$$
e^{x U(v)}=\sum_{n=0}^{\infty} \frac{v^{n}}{n!} y_{n}(x)
$$

where y_{n} are polynomials in x, called basic polynomials.

2 Analytic representations of the Heisenberg-Weyl algebra

A function $V(z)$ analytic in a neighborhood of the origin in C yields a generalized differential operator $V(D)$ acting on functions of x of the form $\sum p_{j}(x) \exp \left(a_{j} x\right)$, where a_{j} are in the domain of V. D is the operator $d / d x$. With X denoting the operator of multiplication by x, we have the commutation relations

$$
[D, X]=I
$$

with I the identity operator. This extends to

$$
[V(D), X]=V^{\prime}(D)
$$

Introduce the operator

$$
W(D)=1 / V^{\prime}(D)
$$

Define $\xi=X W(D)$. Then

$$
[V, \xi]=I
$$

The operator $\xi=X W(D)$ now plays the rôle of the variable x, with corresponding differentiation operator V.

3 Vector fields and dual vector fields

Let A be local coordinates and let $\hat{\xi}$ be the vector field $\hat{\xi}=W(A) \partial_{A}$. Then the main observation is the relation

$$
\xi e^{A x}=\hat{\xi} e^{A x}
$$

since both evaluate to $x W(A) \exp (A x)$. We say that the operator ξ is dual to the vector field $\hat{\xi}$.

Now we can use the vector field to exponentiate the operator ξ. Since ξ and $\hat{\xi}$ commute, we may iterate the above relation to

$$
e^{t \xi} e^{A x}=e^{t \hat{\xi}} e^{A x}
$$

3.1 Integral curves

Now we exponentiate by solving the equation for the characteristics: $\dot{A}=W(A)$. Recalling that $W(A)=1 / V^{\prime}(A)$, we integrate to get

$$
A(t)=U(t+V(A))
$$

In other words, the solution to the initial-value problem

$$
\frac{\partial u}{\partial t}=\hat{\xi} u, \quad u(0)=f
$$

is $u=f(U(t+V(A)))$, for any smooth f.
We write this as

$$
e^{t \hat{\xi}} f(A)=f(U(t+V(A)))
$$

With $f=\exp (A x)$, we thus get

$$
e^{t \xi} e^{A x}=e^{t \hat{\xi}} e^{A x}=\exp (x U(t+V(A)))
$$

Setting $A=0$ we get

$$
e^{t \xi} 1=e^{x U(t)}
$$

Thus we have the expansion

$$
e^{x U(t)}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \xi^{n} 1=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} y_{n}(x)
$$

In other words

$$
y_{n}(x)=\xi^{n} 1
$$

Since every $y_{n}, n \geq 1$, has a common factor of x, let $\theta_{n}(x)=y_{n+1}(x) / x, n \geq 0$.

Now form $(\exp (x U(t))-1) / x$ and take the limit $x \rightarrow 0$ to get

$$
U(t)=\sum_{n=1}^{\infty} \frac{t^{n}}{n!} \theta_{n-1}(x)
$$

4 Action of a generalized differential operator

Write

$$
W(z)=\sum_{n=0}^{\infty} \frac{\mu_{n}}{n!} z^{n}
$$

Generally, the only conditions on W are coming from the relation $W=1 / V^{\prime}$. However, as suggested by the notation, if W is the moment generating function for a probability distribution, then μ_{n} are the corresponding moments.
Thus, write in the general case $\left\langle\left\langle X^{n}\right\rangle\right\rangle=\mu_{n}$ and in the positive definite, probabilistic, case: $\left\langle X^{n}\right\rangle=\mu_{n}$.

For an analytic function f, we expand

$$
f(x+X)=\sum_{n=0}^{\infty} \frac{X^{n}}{n!} f^{(n)}(x)
$$

Taking (generalized) expected value, we see that

$$
W(D) f(x)=\sum_{n=0}^{\infty} \frac{\mu_{n}}{n!} f^{(n)}(x)=\langle\langle f(x+X)\rangle\rangle
$$

5 Basic polynomials and random walks

We extend the generalized averaging to several variables by taking them to be effectively independent:

$$
\left\langle\left\langle X_{1}^{n_{1}} X_{2}^{n_{2}} \cdots X_{m}^{n_{m}}\right\rangle\right\rangle=\mu_{n_{1}} \mu_{n_{2}} \cdots \mu_{n_{m}}
$$

Then we have
Theorem 5.1 The basic polynomials are given in the form of generalized factorials by

$$
y_{n}(x)=
$$

$$
\left\langle\left\langle x\left(x+X_{1}\right)\left(x+X_{1}+X_{2}\right) \cdots\left(x+X_{1}+X_{2}+\cdots+X_{n-1}\right)\right\rangle\right\rangle
$$

In the probabilistic case, we denote the random walk generated by the underlying distribution by $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, where the X_{i} are independent, identically distributed random variables with moment generating function equal to W . With $S_{0}=x$, the corresponding expectation value is denoted by $\langle\cdot\rangle_{x}$. Then the Theorem yields

$$
\theta_{n}=\left\langle S_{1} S_{2} \cdots S_{n}\right\rangle_{x}
$$

$6 W$ as a convolution operator

Writing, in the probabilistic case, $W(D)=\int e^{u D} p(d u)$, we have
$(X W(D))^{n}=$

$$
x \int e^{u_{n} D} p\left(d u_{n}\right) \cdots x \int e^{u_{1} D} p\left(d u_{1}\right)
$$

With $\exp (u D) f(x)=f(x+u)$, we get
$(X W(D))^{n}=$

$$
\begin{aligned}
& \int x\left(x+u_{1}\right)\left(x+u_{1}+u_{2}\right) \cdots\left(x+u_{1}+\cdots+u_{n-1}\right) \\
& \cdot \exp \left(\left(\sum_{j=1}^{n} u_{j}\right) D\right) p\left(d u_{1}\right) \cdots p\left(d u_{n}\right)
\end{aligned}
$$

This is a formula for the operator ξ^{n}. I.e.,

$$
\xi^{n}=\left\langle S_{0} S_{1} S_{2} \cdots S_{n-1} e^{S_{n} D}\right\rangle_{x}
$$

Applying this to the constant function 1 yields the formula of the Theorem.

We thus have

$$
e^{x U(v)}=1+x \sum_{n=0}^{\infty} \frac{v^{n}}{n!}\left\langle\prod_{j=1}^{n-1}\left(x+S_{j}\right)\right\rangle_{0}
$$

and

$$
U(v)=\sum_{n=1}^{\infty} \frac{v^{n}}{n!}\left\langle\prod_{j=1}^{n-1} S_{j}\right\rangle_{0}
$$

Note that given an analytic moment generating function $W(z)$, we can form

$$
V(z)=\int_{0}^{z} \frac{d u}{W(u)}
$$

And the inverse of V is given by the above formula.

7 Examples

Example 1. Gaussian random walk

With $W=\exp \left(z^{2} / 2\right)$, we get V as the distribution function of a standard Gaussian, modulo a factor of $\sqrt{2 \pi}$. Thus, we get the expansion of the inverse Gaussian distribution.

Example 2. Exponential random walk

With $W=(1-q z)^{-1}$, an exponential distribution with mean q, we get

$$
V=z-q z^{2} / 2, \quad U=\frac{1-\sqrt{1-2 q v}}{q}
$$

Thus, with $T_{1}, T_{2}, \ldots, T_{n}, \ldots$ independent exponentials with mean q we have

$$
\left\langle T_{1}\left(T_{1}+T_{2}\right) \cdots\left(T_{1}+T_{2}+\cdots+T_{n}\right)\right\rangle=n!\binom{2 n}{n}\left(\frac{q}{2}\right)^{n}
$$

Example 3. Cayley example

With $V(z)=z e^{-z}$, we get $W(z)=e^{z}(1-z)^{-1}$, so that the corresponding probability distribution is an exponential with mean 1 shifted by 1 .

Checking that

$$
y_{n}(x)=x(x+n)^{n-1}
$$

we find

$$
n^{n-1}=\left\langle\left(1+T_{1}\right)\left(2+T_{1}+T_{2}\right) \cdots\left(n-1+T_{1}+T_{2}+\cdots+T_{n-1}\right)\right\rangle
$$

8 Conclusions. Further work.

1. Note that we are indeed able to recover the more general $g(U(v))$ by the relation

$$
g(U(v))=\left.\sum_{n=0}^{\infty} \frac{v^{n}}{n!} g(D) y_{n}(x)\right|_{x=0}
$$

2. The original application involved $W=(1+z \tan z)^{2}$ which arises in finding the critical points of the function $(\sin x) / x$. The idea was to develop a recursive method suitable for efficient symbolic computation. Thus the techniques presented here were developed.
3. Further work involves
a. Multivariate case: the analytic HW version has been available for some time, but the corresponding random walk formulation is yet to be completed
b. An interesting project would be to develop a dual version of differential geometry
c. What about multiplication in a group?

9 References

J. Pitman: Enumeration of trees and forests related to branching processes and random walks in D. Aldous and J . Propp (eds.), Microsurveys in discrete probability, 41, DIMACS Ser. Discr. Math. Theor. Comp. Sci., A.M.S., Providence, RI (1998).
B.D. Taylor: Umbral presentations for polynomial sequences, Computers \& Mathematics with Applications, 41, 9 (2001) 1085-1098.
> R. Winkel: An Exponential Formula for Polynomial Vector Fields, Advances in Mathematics, 128 (1997) 190-216.
R. Winkel: An Exponential Formula for Polynomial Vector Fields (II): Lie Series, Exponential Substitution, and Rooted Trees, Advances in Mathematics,147 (1999) 260-303.

