
Vector fields,
Lagrange Inversion,
and Random Walks

Philip Feinsilver

Southern Illinois University

Carbondale, IL

We indicate the relation between vector fields and operator

calculus — dual vector fields. After presenting the approach to

Lagrange inversion in general in this context, we specialize to the

positive definite case and give a formula for the coefficients of the

inverse function in terms of an associated random walk.

Probability Theory on Groups and Related Structures

Budapest, Hungary

August 2, 2004



1 Classical Lagrange Inversion

If y = f(z) is analytic around z0 with y0 = f(z0),

f ′(z0) 6= 0, then for analytic g, with z = f−1(y),

g(z) = g(z0)
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Note that the expression involving the (n − 1)st derivative

is the coefficient of (z − z0)
n−1 in the expansion of

[(z − z0)/(f(z) − f(z0))]
n.



From now on we are in a neighborhood of the origin in C.

We take a ”normalized” analytic function, V (z), with

V (0) = 0, V ′(0) = 1. Its inverse is U , i.e.,

v = V (z) ⇔ z = U(v). The Lagrange formula may be

written

g(U) = g(0)
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We will derive a formula for g(U) = exp(xU). In this case,

the expansion takes the form

exU(v) =
∞
∑

n=0

vn

n!
yn(x)

where yn are polynomials in x, called basic polynomials.



2 Analytic representations of the Heisenberg-Weyl

algebra

A function V (z) analytic in a neighborhood of the origin in

C yields a generalized differential operator V (D) acting on

functions of x of the form
∑

pj(x) exp(ajx), where aj

are in the domain of V . D is the operator d/dx. With X

denoting the operator of multiplication by x, we have the

commutation relations

[D, X ] = I

with I the identity operator. This extends to

[V (D), X ] = V ′(D)

Introduce the operator

W (D) = 1/V ′(D)

Define ξ = XW (D). Then

[V, ξ] = I

The operator ξ = XW (D) now plays the rôle of the

variable x, with corresponding differentiation operator V .



3 Vector fields and dual vector fields

Let A be local coordinates and let ξ̂ be the vector field

ξ̂ = W (A)∂A. Then the main observation is the relation

ξ eAx = ξ̂ eAx

since both evaluate to xW (A) exp(Ax). We say that the

operator ξ is dual to the vector field ξ̂.

Now we can use the vector field to exponentiate the operator

ξ. Since ξ and ξ̂ commute, we may iterate the above

relation to

etξeAx = etξ̂eAx



3.1 Integral curves

Now we exponentiate by solving the equation for the

characteristics: Ȧ = W (A). Recalling that

W (A) = 1/V ′(A), we integrate to get

A(t) = U(t + V (A))

In other words, the solution to the initial-value problem

∂u

∂t
= ξ̂ u , u(0) = f

is u = f(U(t + V (A))), for any smooth f .

We write this as

etξ̂f(A) = f(U(t + V (A)))

With f = exp(Ax), we thus get

etξeAx = etξ̂eAx = exp (xU(t + V (A)))

Setting A = 0 we get

etξ1 = exU(t)



Thus we have the expansion

exU(t) =
∞
∑

n=0
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n!
ξn1 =

∞
∑

n=0

tn

n!
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In other words

yn(x) = ξn1

Since every yn, n ≥ 1, has a common factor of x, let

θn(x) = yn+1(x)/x, n ≥ 0.

Now form (exp(xU(t)) − 1)/x and take the limit x → 0

to get

U(t) =

∞
∑

n=1

tn

n!
θn−1(x)



4 Action of a generalized differential operator

Write

W (z) =
∞
∑

n=0

µn

n!
zn

Generally, the only conditions on W are coming from the

relation W = 1/V ′. However, as suggested by the

notation, if W is the moment generating function for a

probability distribution, then µn are the corresponding

moments.

Thus, write in the general case 〈〈Xn〉〉 = µn and in the

positive definite, probabilistic, case: 〈Xn〉 = µn.

For an analytic function f , we expand

f(x + X) =

∞
∑

n=0

Xn

n!
f (n)(x)

Taking (generalized) expected value, we see that

W (D) f(x) =
∞
∑

n=0

µn

n!
f (n)(x) = 〈〈f(x + X)〉〉



5 Basic polynomials and random walks

We extend the generalized averaging to several variables by

taking them to be effectively independent:

〈〈Xn1

1 Xn2

2 . . .Xnm

m 〉〉 = µn1
µn2

· · ·µnm

Then we have

Theorem 5.1 The basic polynomials are given in the form of

generalized factorials by

yn(x) =

〈〈x(x+X1)(x+X1+X2) · · · (x+X1+X2+· · ·+Xn−1)〉〉

In the probabilistic case, we denote the random walk

generated by the underlying distribution by

Sn = X1 + X2 + · · · + Xn, where the Xi are

independent, identically distributed random variables with

moment generating function equal to W. With S0 = x, the

corresponding expectation value is denoted by 〈·〉x. Then

the Theorem yields

θn = 〈S1S2 · · ·Sn〉x



6 W as a convolution operator

Writing, in the probabilistic case, W (D) =
∫

euD p(du),

we have

(XW (D))n =

x

∫

eunD p(dun) · · ·x
∫

eu1D p(du1)

With exp(uD)f(x) = f(x + u), we get

(XW (D))n =
∫

x(x + u1)(x + u1 + u2) · · · (x + u1 + · · · + un−1)

· exp
(

(
n

∑

j=1

uj)D
)

p(du1) · · · p(dun)

This is a formula for the operator ξn. I.e.,

ξn = 〈S0S1S2 · · ·Sn−1e
SnD〉x

Applying this to the constant function 1 yields the formula of

the Theorem.



We thus have

exU(v) = 1 + x
∞
∑

n=0

vn

n!
〈
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∏
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(x + Sj)〉0

and
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Note that given an analytic moment generating function

W (z), we can form

V (z) =

∫ z

0

du

W (u)

And the inverse of V is given by the above formula.



7 Examples

Example 1. Gaussian random walk

With W = exp(z2/2), we get V as the distribution

function of a standard Gaussian, modulo a factor of
√

2π.

Thus, we get the expansion of the inverse Gaussian

distribution.



Example 2. Exponential random walk

With W = (1 − qz)−1, an exponential distribution with

mean q, we get

V = z − qz2/2 , U =
1 −√

1 − 2qv

q

Thus, with T1, T2,. . . ,Tn,. . . independent exponentials with

mean q we have

〈T1(T1+T2) · · · (T1+T2+· · ·+Tn)〉 = n!

(

2n

n

)

(q

2

)n



Example 3. Cayley example

With V (z) = z e−z , we get W (z) = ez(1 − z)−1, so

that the corresponding probability distribution is an

exponential with mean 1 shifted by 1.

Checking that

yn(x) = x(x + n)n−1

we find

nn−1 = 〈(1+T1)(2+T1+T2) · · · (n−1+T1+T2+· · ·+Tn−1)〉



8 Conclusions. Further work.

1. Note that we are indeed able to recover the more

general g(U(v)) by the relation

g(U(v)) =
∞
∑

n=0

vn

n!
g(D) yn(x)

∣

∣

∣

∣

x=0

2. The original application involved W = (1 + z tan z)2

which arises in finding the critical points of the function

(sinx)/x. The idea was to develop a recursive method

suitable for efficient symbolic computation. Thus the

techniques presented here were developed.

3. Further work involves

a. Multivariate case: the analytic HW version has been

available for some time, but the corresponding random

walk formulation is yet to be completed

b. An interesting project would be to develop a dual

version of differential geometry

c. What about multiplication in a group?
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