Vector fields, Lagrange Inversion, and Random Walks

Philip Feinsilver

Southern Illinois University Carbondale, IL

We indicate the relation between vector fields and operator calculus — dual vector fields. After presenting the approach to Lagrange inversion in general in this context, we specialize to the positive definite case and give a formula for the coefficients of the inverse function in terms of an associated random walk.

> Probability Theory on Groups and Related Structures Budapest, Hungary August 2, 2004

1 Classical Lagrange Inversion

If y = f(z) is analytic around z_0 with $y_0 = f(z_0)$, $f'(z_0) \neq 0$, then for analytic g, with $z = f^{-1}(y)$,

$$g(z) = g(z_0) + \sum_{n=1}^{\infty} \frac{(y - y_0)^n}{n!} \left(\frac{d}{dz}\right)^{n-1} \left(g'(z) \left[\frac{z - z_0}{f(z) - f(z_0)}\right]^n\right) \Big|_{z=z_0}$$

Note that the expression involving the $(n-1)^{st}$ derivative is the coefficient of $(z - z_0)^{n-1}$ in the expansion of $[(z - z_0)/(f(z) - f(z_0))]^n$. From now on we are in a neighborhood of the origin in \mathbb{C} . We take a "normalized" analytic function, V(z), with V(0) = 0, V'(0) = 1. Its inverse is U, i.e., $v = V(z) \Leftrightarrow z = U(v)$. The Lagrange formula may be written

$$g(U) = g(0)$$

+ $\sum_{n=1}^{\infty} \frac{v^n}{n!} \left(\frac{d}{dU}\right)^{n-1} \left(g'(U) \left[\frac{U}{V(U)}\right]^n\right)\Big|_{U=0}$

We will derive a formula for $g(U)=\exp(xU).$ In this case, the expansion takes the form

$$e^{xU(v)} = \sum_{n=0}^{\infty} \frac{v^n}{n!} y_n(x)$$

where y_n are polynomials in x, called *basic polynomials*.

2 Analytic representations of the Heisenberg-Weyl algebra

A function V(z) analytic in a neighborhood of the origin in \mathbb{C} yields a generalized differential operator V(D) acting on functions of x of the form $\sum p_j(x) \exp(a_j x)$, where a_j are in the domain of V. D is the operator d/dx. With X denoting the operator of multiplication by x, we have the commutation relations

$$[D, X] = I$$

with I the identity operator. This extends to

$$[V(D), X] = V'(D)$$

Introduce the operator

$$W(D) = 1/V'(D)$$

Define $\xi = XW(D)$. Then

$$[V,\xi] = I$$

The operator $\xi = XW(D)$ now plays the rôle of the variable x, with corresponding differentiation operator V.

3 Vector fields and dual vector fields

Let A be local coordinates and let $\hat{\xi}$ be the vector field $\hat{\xi} = W(A)\partial_A$. Then the main observation is the relation

$$\xi \, e^{Ax} = \hat{\xi} \, e^{Ax}$$

since both evaluate to $xW(A)\,\exp(Ax)$. We say that the operator ξ is *dual* to the vector field $\hat{\xi}$.

Now we can use the vector field to exponentiate the operator ξ . Since ξ and $\hat{\xi}$ commute, we may iterate the above relation to

$$e^{t\xi}e^{Ax} = e^{t\hat{\xi}}e^{Ax}$$

3.1 Integral curves

Now we exponentiate by solving the equation for the characteristics: $\dot{A} = W(A)$. Recalling that W(A) = 1/V'(A), we integrate to get

$$A(t) = U(t + V(A))$$

In other words, the solution to the initial-value problem

$$\frac{\partial u}{\partial t} = \hat{\xi} \, u \,, \qquad u(0) = f$$

is $\boldsymbol{u} = f(\boldsymbol{U}(t+\boldsymbol{V}(A))),$ for any smooth f. We write this as

$$e^{t\hat{\xi}}f(A) = f(U(t+V(A)))$$

With $f=\exp(Ax),$ we thus get

$$e^{t\xi}e^{Ax} = e^{t\hat{\xi}}e^{Ax} = \exp\left(xU(t+V(A))\right)$$

Setting A = 0 we get

$$e^{t\xi}1 = e^{xU(t)}$$

Thus we have the expansion

$$e^{xU(t)} = \sum_{n=0}^{\infty} \frac{t^n}{n!} \xi^n 1 = \sum_{n=0}^{\infty} \frac{t^n}{n!} y_n(x)$$

In other words

$$y_n(x) = \xi^n 1$$

Since every y_n , $n \ge 1$, has a common factor of x, let $\theta_n(x) = y_{n+1}(x)/x$, $n \ge 0$.

Now form $(\exp(xU(t))-1)/x$ and take the limit $x\to 0$ to get

$$U(t) = \sum_{n=1}^{\infty} \frac{t^n}{n!} \theta_{n-1}(x)$$

4 Action of a generalized differential operator

Write

$$W(z) = \sum_{n=0}^{\infty} \frac{\mu_n}{n!} \, z^n$$

Generally, the only conditions on W are coming from the relation W = 1/V'. However, as suggested by the notation, if W is the moment generating function for a probability distribution, then μ_n are the corresponding moments.

Thus, write in the general case $\langle\!\langle X^n \rangle\!\rangle = \mu_n$ and in the positive definite, probabilistic, case: $\langle X^n \rangle = \mu_n$.

For an analytic function f, we expand

$$f(x+X) = \sum_{n=0}^{\infty} \frac{X^n}{n!} f^{(n)}(x)$$

Taking (generalized) expected value, we see that

$$W(D) f(x) = \sum_{n=0}^{\infty} \frac{\mu_n}{n!} f^{(n)}(x) = \langle\!\langle f(x+X) \rangle\!\rangle$$

5 Basic polynomials and random walks

We extend the generalized averaging to several variables by taking them to be effectively independent:

$$\langle\!\langle X_1^{n_1} X_2^{n_2} \dots X_m^{n_m} \rangle\!\rangle = \mu_{n_1} \mu_{n_2} \cdots \mu_{n_m}$$

Then we have

Theorem 5.1 The basic polynomials are given in the form of generalized factorials by $y_n(x) =$

 $\langle\!\langle x(x+X_1)(x+X_1+X_2)\cdots(x+X_1+X_2+\cdots+X_{n-1})\rangle\!\rangle$

In the probabilistic case, we denote the random walk generated by the underlying distribution by $S_n = X_1 + X_2 + \cdots + X_n$, where the X_i are independent, identically distributed random variables with moment generating function equal to W. With $S_0 = x$, the corresponding expectation value is denoted by $\langle \cdot \rangle_x$. Then the Theorem yields

$$\theta_n = \langle S_1 S_2 \cdots S_n \rangle_x$$

6 W as a convolution operator

Writing, in the probabilistic case, $W(D) = \int e^{uD} \, p(du)$, we have

$$(XW(D))^{n} =$$

$$x \int e^{u_{n}D} p(du_{n}) \cdots x \int e^{u_{1}D} p(du_{1})$$
With $\exp(uD)f(x) = f(x+u)$, we get
$$(XW(D))^{n} =$$

$$\int x(x+u_{1})(x+u_{1}+u_{2}) \cdots (x+u_{1}+\cdots+u_{n-1})$$

$$\cdot \exp\left((\sum_{j=1}^{n} u_{j})D\right) p(du_{1}) \cdots p(du_{n})$$

This is a formula for the operator ξ^n . I.e.,

$$\xi^n = \langle S_0 S_1 S_2 \cdots S_{n-1} e^{S_n D} \rangle_x$$

Applying this to the constant function $1\ {\rm yields}$ the formula of the Theorem.

We thus have

$$e^{xU(v)} = 1 + x \sum_{n=0}^{\infty} \frac{v^n}{n!} \langle \prod_{j=1}^{n-1} (x+S_j) \rangle_0$$

and

$$U(v) = \sum_{n=1}^{\infty} \frac{v^n}{n!} \langle \prod_{j=1}^{n-1} S_j \rangle_0$$

Note that given an analytic moment generating function $W(\boldsymbol{z}),$ we can form

$$V(z) = \int_0^z \frac{du}{W(u)}$$

And the inverse of \boldsymbol{V} is given by the above formula.

7 Examples

Example 1. Gaussian random walk

With $W = \exp(z^2/2)$, we get V as the distribution function of a standard Gaussian, modulo a factor of $\sqrt{2\pi}$. Thus, we get the expansion of the inverse Gaussian distribution.

Example 2. Exponential random walk

With $W = (1 - qz)^{-1}$, an exponential distribution with mean q, we get

$$V = z - qz^2/2$$
, $U = \frac{1 - \sqrt{1 - 2qv}}{q}$

Thus, with $T_1, T_2, \ldots, T_n, \ldots$ independent exponentials with mean q we have

$$\langle T_1(T_1+T_2)\cdots(T_1+T_2+\cdots+T_n)\rangle = n! \binom{2n}{n} \left(\frac{q}{2}\right)^n$$

Example 3. Cayley example

With
$$V(z) = z e^{-z}$$
, we get $W(z) = e^{z}(1-z)^{-1}$, so
that the corresponding probability distribution is an
exponential with mean 1 shifted by 1.

Checking that

$$y_n(x) = x(x+n)^{n-1}$$

we find

$$n^{n-1} = \langle (1+T_1)(2+T_1+T_2)\cdots(n-1+T_1+T_2+\cdots+T_{n-1}) \rangle$$

8 Conclusions. Further work.

1. Note that we are indeed able to recover the more general g(U(v)) by the relation

$$g(U(v)) = \sum_{n=0}^{\infty} \frac{v^n}{n!} g(D) y_n(x) \Big|_{x=0}$$

- 2. The original application involved $W = (1 + z \tan z)^2$ which arises in finding the critical points of the function $(\sin x)/x$. The idea was to develop a recursive method suitable for efficient symbolic computation. Thus the techniques presented here were developed.
- 3. Further work involves

 a. Multivariate case: the analytic HW version has been available for some time, but the corresponding random walk formulation is yet to be completed

 b. An interesting project would be to develop a dual version of differential geometry

c. What about multiplication in a group?

9 References

J. Pitman: Enumeration of trees and forests related to branching processes and random walks *in D. Aldous and J. Propp (eds.), Microsurveys in discrete probability*, **41**, *DIMACS Ser. Discr. Math. Theor. Comp. Sci., A.M.S., Providence, RI* (1998).

B.D. Taylor: Umbral presentations for polynomial sequences,*Computers & Mathematics with Applications*, **41**, 9 (2001)1085-1098.

R. Winkel: An Exponential Formula for Polynomial Vector Fields, *Advances in Mathematics*, **128** (1997) 190 - 216.

R. Winkel: An Exponential Formula for Polynomial Vector Fields (II): Lie Series, Exponential Substitution, and Rooted Trees, *Advances in Mathematics*,**147** (1999) 260 - 303.