Second Quantization and Recurrences

Philip Feinsilver and John McSorley

Department of Mathematics

Southern IIlinois University, Carbondale, Illinois

Via recurrences, we find the matching polynomials of cyclically labelled paths, cycles, and trees.

The technique is to use
trace formulas for matrices acting on the space of symmetric tensors.

Special Session on Special Functions and Orthogonal Polynomials Annandale-on-Hudson, NY
9 October 2005

1 Matching polynomials

$$
1+x_{1}+x_{2}+x_{3}+x_{1} x_{3}
$$

nc-function: ϕ_{n} is the sum of all nonconsecutive monomials in the variables $x_{1}, x_{2}, \ldots, x_{n}$.

Reciprocal-Chebyshev 2 ${ }^{\text {nd }}$ kind: $\phi_{n-1}(x)=\sum_{k}\binom{n-k}{k} x^{k}$

$$
\begin{aligned}
& \text { Cycle } \\
& \mathbf{x}_{2} \\
& 1+x_{1}+x_{2}+x_{3}+x_{4}+x_{1} x_{3}+x_{2} x_{4}
\end{aligned}
$$

ncc-function: τ_{n} is the sum of all nonconsecutive, cyclic monomials in the variables $x_{1}, x_{2}, \ldots, x_{n}$.
Reciprocal-Chebyshev $1^{\text {st }}$ kind: $\tau_{n}(x)=\sum_{k}\binom{n-k}{k} \frac{n}{n-k} x^{k}$ Multi-variable cyclic path

$$
\begin{aligned}
& 1+2 x_{1}+2 x_{2}+2 x_{3}+x_{1}^{2}+2 x_{1} x_{2}+3 x_{1} x_{3} \\
& \quad+x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}+x_{1}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}
\end{aligned}
$$

This is the question

2 Recurrences and matrices

- $n c$-Recurrence

$$
\phi_{n}=\phi_{n-1}+x_{n} \phi_{n-2}
$$

The nc-function ϕ_{n} satisfies this recurrence with I.C.'s
$\phi_{-1}=1, \phi_{0}=1$.
Denoting by f_{n} and g_{n} the fundamental solutions to this recurrence, we have $\phi_{n}=f_{n}+g_{n}$.

- Matrices

$$
X=X_{n}=\left(\begin{array}{cc}
g_{n-1} & f_{n-1} \\
g_{n} & f_{n}
\end{array}\right)
$$

The ncc-function $\tau_{n}=g_{n-1}+f_{n}$ is the trace of X_{n}.
The matrix factors as

$$
X=\left(\begin{array}{cc}
0 & 1 \\
x_{n} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
x_{n-1} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
x_{1} & 1
\end{array}\right)
$$

2.1 Tau-Delta recurrence

Any matrix element $\psi_{N}=\left\langle\mathbf{u}, X^{N} \mathbf{v}\right\rangle, \mathbf{u}, \mathbf{v} \in \mathbf{R}^{2}$, satisfies the tau-Delta recurrence

$$
\psi_{N}=\tau \psi_{N-1}-\Delta \psi_{N-2}
$$

where $\tau=\operatorname{tr} X$ and $\Delta=\operatorname{det} X=(-1)^{n} x_{1} x_{2} \cdots x_{n}$.

- First fundamental solution

$$
G_{N}=\sum_{k=0}^{\lfloor N / 2\rfloor}\binom{N-k}{k} \tau^{N-2 k}(-\Delta)^{k}
$$

- Generating function

$$
\frac{1}{\operatorname{det}(I-t X)}=\sum_{N=0}^{\infty} t^{N} G_{N}
$$

Powers of X correspond to cyclic repetition of the initial path with n edges.

3 Second quantization and trace formulas

- Symmetric representation of a $d \times d$ matrix A

With $\mathbf{u}=\left(u_{1}, \ldots, u_{d}\right)^{T}, \mathbf{v}=\left(v_{1}, \ldots, v_{d}\right)^{T}$,

$$
\mathbf{v}=A \mathbf{u}
$$

For given homogeneous degree N, define
matrix elements by

$$
\begin{aligned}
v_{1}^{m_{1}} \cdots v_{d}^{m_{d}} & =\sum_{n_{1}, \ldots, n_{d}}\left\langle\begin{array}{c}
m_{1}, \ldots, m_{d} \\
n_{1}, \ldots, n_{d}
\end{array}\right\rangle_{A} u_{1}^{n_{1}} \cdots u_{d}^{n_{d}} \\
\mathbf{v}^{\mathbf{m}} & =\sum_{\mathbf{n}}\left\langle\begin{array}{c}
\mathbf{m} \\
\mathbf{n}
\end{array}\right\rangle_{A} \mathbf{u}^{\mathbf{n}}
\end{aligned}
$$

This is a representation of the multiplicative semigroup of matrices. In other words, we have the

- Homomorphism property

$$
\left\langle\begin{array}{c}
\mathbf{m} \\
\mathbf{n}
\end{array}\right\rangle_{A B}=\sum_{\mathbf{k}}\left\langle\begin{array}{c}
\mathbf{m} \\
\mathbf{k}
\end{array}\right\rangle_{A}\left\langle\begin{array}{c}
\mathbf{k} \\
\mathbf{n}
\end{array}\right\rangle_{B}
$$

3.1 Symmetric traces

- The action defined here on polynomials is equivalent to the action on symmetric tensor powers, as in classical invariant theory. See Fulton and Harris [Representation theory, a first course, pp. 472-5].
- boson Fock space over the d-dimensional vector space is the space of symmetric tensor powers.
- Symmetric trace: for fixed homogeneous degree N the symmetric trace of A in degree N

$$
\operatorname{tr}_{\mathrm{Sym}}^{N}(A)=\sum_{|\mathbf{m}|=N}\left\langle\begin{array}{l}
\mathbf{m} \\
\mathbf{m}
\end{array}\right\rangle_{A}
$$

- Symmetric trace theorem
(See Springer [Invariant theory, LNM 585, pp. 51-2].)

$$
\frac{1}{\operatorname{det}(I-t A)}=\sum_{N=0}^{\infty} t^{N} \operatorname{tr}_{\mathrm{Sym}}^{N}(A)
$$

- Tau-Delta recurrence revisited

For G_{N}, the first fundamental solution to the $\tau-\Delta$ recurrence, the Symmetric Trace Theorem says

$$
\begin{aligned}
G_{N} & =\operatorname{tr}_{S y m}^{N}(X)=\sum_{|\mathbf{m}|=N}\left\langle\begin{array}{c}
\mathbf{m} \\
\mathbf{m}
\end{array}\right\rangle_{X} \\
& =\sum_{|\mathbf{m}|=N}\left\langle\begin{array}{c}
\mathbf{m} \\
\mathbf{m}
\end{array}\right\rangle_{\xi_{n} \xi_{n-1} \cdots \xi_{1}}
\end{aligned}
$$

By the Homomorphism Property, we calculate the matrix elements for each factor ξ_{i}.

- Matrix elements for $\xi_{i}=\left(\begin{array}{cc}0 & 1 \\ x_{i} & a_{i}\end{array}\right)$. The mapping induced on polynomials is

$$
v_{1}=u_{2}, \quad v_{2}=x_{i} u_{1}+a_{i} u_{2}
$$

And we find, for fixed homogeneous degree N,

$$
\left\langle\begin{array}{c}
m \\
n
\end{array}\right\rangle_{\xi_{i}}=\binom{N-m}{n} x_{i}^{n} a_{i}^{N-m-n}
$$

4 Cyclic binomial identity

$$
\begin{aligned}
& G_{N} \sum_{k_{1}, \ldots, k_{n}}\binom{N-k_{2}}{k_{1}}\binom{N-k_{3}}{k_{2}} \cdots\binom{N-k_{n}}{k_{n-1}}\binom{N-k_{1}}{k_{n}} \\
& \quad \times x_{1}^{k_{1}} \cdots x_{n}^{k_{n}} a_{1}^{N-k_{1}-k_{2}} a_{2}^{N-k_{2}-k_{3}} \cdots a_{n}^{N-k_{n}-k_{1}} \\
& = \\
& =\Delta^{N / 2} U_{N}\left(\frac{\tau}{2 \sqrt{\Delta}}\right) \\
& = \\
& =\sum_{k=0}^{\lfloor N / 2\rfloor}\binom{N-k}{k} \tau^{N-2 k}(-\Delta)^{k} \\
& = \\
& \sum_{m, k}\binom{m}{k}\binom{N-m}{m-k} f_{n}^{N-2 m+k} g_{n-1}^{k}\left(f_{n-1} g_{n}\right)^{m-k}
\end{aligned}
$$

where U_{N} denotes the Chebyshev polynomial of the second kind.

Recall f_{n} and g_{n} are the fundamental solutions to the initial n-step recurrence.

5 Comments

- Special functions interest
$\mathrm{n}=2$ finite ${ }_{2} F_{1}$ summation or Chu-Vandermonde sum
$\mathrm{n}=3$ gives ${ }_{3} F_{2}$ Pfaff-Saalschütz sum
$n \geq 4$ gives a multivariate summation formula that requires further investigation
- Matching polynomials
$G_{N}+\left(\phi_{n}-\tau_{n}\right) G_{N-1}$ is the matching polynomial for the N-fold repeated path of length n
$2 \Delta^{N / 2} T_{N}\left(\frac{\tau}{2 \sqrt{\Delta}}\right)$ is for the corresponding cycle.

Formulas for trees.

6 Conclusion

- Second quantization of a recurrence which is the periodic extension [constant coefficients] of a given recurrence [non-constant coefficients] yields identities in the underlying variables by interpreting the fundamental solution in various ways.
- Hierarchy of hierarchies of identities since for fixed r, an r-step recurrence gives a hierarchy of identities. Now vary r.
- Relation with mathematical objects such as multivariate Chebyshev polynomials?

