# Krawtchouk Polynomials Matrices and Transforms 

Philip Feinsilver

Southern IIlinois University
Carbondale, Illinois USA 62901
René Schott
Nancy-Université, Université Henri Poincaré
54506 Vandoeuvre-lès-Nancy, France

Krawtchouk polynomials are formulated as matrices and properties of Krawtchouk transforms explored.
$10^{\text {th }}$ International Conference on Artificial Intelligence and Symbolic Computation

AISC 2010

Paris, France
5-6 July 2010

## 1 Introduction

- Krawtchouk polynomials appear in a variety of contexts, most notably as orthogonal polynomials with respect to the binomial distribution.
- Krawtchouk transform on vectors.
- Algorithm for the Krawtchouk transform on vectors.
- Krawtchouk expansions of functions.
- Operator calculus formulation for the coefficients of Krawtchouk expansions.
- Applications of Krawtchouk transforms.


## 2 Krawtchouk Polynomials, Kravchuk Matrices

One may view Kravchuk matrices as an extension of the binomial coefficients. Consider the "degree-two algebraic rules" and translate them into a "second-degree Kravchuk matrix":

$$
\begin{aligned}
(a+b)^{2} & =a^{2}+2 a b+b^{2} \\
(a+b)(a-b) & =a^{2}-b^{2} \\
(a-b)^{2} & =a^{2}-2 a b+b^{2}
\end{aligned}
$$

read off

$$
K^{(2)}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 0 & -2 \\
1 & -1 & 1
\end{array}\right]
$$

The expansion coefficients make up the columns of the matrix.

### 2.1 Generating function

- The entries are determined by the expansion:

$$
G(v ; j, N)=(1+v)^{N-j}(1-v)^{j}=\sum_{i=0}^{N} v^{i} K_{i j}^{(N)}
$$

- Expanding gives the explicit values of the matrix entries:

$$
K_{i}(j, N)=K_{i j}^{(N)}=\sum_{k}(-1)^{k}\binom{j}{k}\binom{N-j}{i-k}
$$

where matrix indices run from 0 to $N$.

- Here are the Kravchuk matrices of orders zero, one, and three:

$$
\begin{gathered}
K^{(0)}=[1] \\
K^{(1)}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \\
K^{(3)}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
3 & 1 & -1 & -3 \\
3 & -1 & -1 & 3 \\
1 & -1 & 1 & -1
\end{array}\right]
\end{gathered}
$$

## 3 Interpretations

- As polynomials in $j$ they are orthogonal with respect to the binomial distribution, $\binom{N}{j}$.
- These correspond to functionals of a random walk moving $\pm 1$ with equal probabilities.
- Transforms of vectors correspond to expansions via matrices.
- Transforms of functions correspond to expansions in terms of polynomials.


## 4 Transform on Vectors

- Multiplying on the right by $K$ gives the transform of $\mathbf{f}=(f(0), f(1), \ldots, f(N))$. Multiply again by $K$ using $K^{2}=2^{N}$ I to get the inverse transform.

$$
\hat{\mathbf{f}}=\mathbf{f} K \quad \text { implies } \quad \mathbf{f}=2^{-N} \hat{\mathbf{f}} K
$$

- Explicitly, this is the expansion of the vector $\mathbf{f}$ in terms of Krawtchouk polynomials in the variable $j$.

$$
f(j)=2^{-N} \sum_{i} \hat{f}(i) K_{i}(j, N)
$$

- We have developed an algorithm for carrying out the transform.


### 4.1 Algorithm

$\Rightarrow$ Given $N>0$. Do the following for $n=0$ to $N$ :

Step 0. Given a row vector of length $N+1$.
Step $n$. You have $n$ current rows.
Form $n$ new rows by summing adjacent values.
Form the $n+1^{\text {st }}$ row by differencing adjacent values of the current $n^{\text {th }}$ row.

- At step $n$, you have $n+1$ rows and $N+1-n$ columns.
- After step $N$, you have a single column of $N+1$ values.

Transposed it is the Krawtchouk transform of the original row.

- Take the column that resulted from applying the algorithm as your new row. Apply the algorithm again. Divide the result by $2^{N}$ and you recover your original values.


## $\because$ Examples

- Let $N=3$. Start with $4,2,0,-3$. Then we have
$\left[\begin{array}{llll}4 & 2 & 0 & -3\end{array}\right] \Rightarrow\left[\begin{array}{rrr}6 & 2 & -3 \\ 2 & 2 & 3\end{array}\right] \Rightarrow\left[\begin{array}{rr}8 & -1 \\ 4 & 5 \\ 0 & -1\end{array}\right] \Rightarrow\left[\begin{array}{r}7 \\ 9 \\ -1 \\ 1\end{array}\right]$
- Start with a row of $K^{(N)}$, you get $2^{N}$ times a vector with 1 in the corresponding spot.

$$
\left[\begin{array}{llll}
3 & 1 & -1 & -3
\end{array}\right] \Rightarrow 2^{3}\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]
$$

- Take a vector that starts with a binomial row, $\binom{n}{i}$. Multiply on the left by $K^{(N)}$. It produces $2^{n}$ times a binomial row with index $N-n$.

$$
K^{(5)}\left[\begin{array}{llllll}
1 & 3 & 3 & 1 & 0 & 0
\end{array}\right]^{t}=2^{3}\left[\begin{array}{llllll}
1 & 2 & 1 & 0 & 0 & 0
\end{array}\right]^{t}
$$

## 5 Expansions of Functions

In the random walk interpretation, $j$ is the number of jumps to the left. The position $x=N-2 j$.

- The generating function for functions of $x$ is

$$
(1+v)^{(N+x) / 2}(1-v)^{(N-x) / 2}=\sum_{n \geq 0} \frac{v^{n}}{n!} K_{n}(x, N)
$$

- A polynomial function of $x$ of degree at most $N$ has an expansion

$$
f(x)=\sum_{0 \leq n \leq N} \tilde{f}(n) K_{n}(x, N)
$$

- The coefficient $\tilde{f}(n)$ has the operator calculus expression

$$
\tilde{f}(n)=\frac{1}{n!}(\cosh D)^{N-n}(\sinh D)^{n} f(0)
$$

where $e^{ \pm D} f(x)=f(x \pm 1)$, shift operators on functions of $x$.

### 5.1 Operator calculus via Matrices

We can use the matrix of the operator $D$ acting on the powers of $x$ for symbolic calculation. Since $D$ is nilpotent acting on polynomials in $x$, the exponentials reduce to finite sums. For example, take $N=4$.

$$
\hat{D}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We have $\cosh \hat{D}$ and $\tanh \hat{D}$ respectively:

$$
\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
0 & 1 & 0 & -2 & 0 \\
0 & 0 & 2 & 0 & -8 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

I. Example

For $\mathrm{N}=4$, let $f(x)=x^{4}+2 x^{3}-x^{2}+5 x$.
We find, with $N=4$, that

$$
f=K_{4}+2 K_{3}+15 K_{2}+25 K_{1}+36
$$

where $K_{0}=1$,

$$
\begin{array}{ll}
K_{1}=x, & K_{3}=x^{3}-10 x \\
K_{2}=x^{2}-4, & K_{4}=x^{4}-16 x^{2}+24
\end{array}
$$

This is obtained by multiplying the column of coefficients of $f(x)$ by the matrix $Y$ formed by the top rows of $\left(\cosh ^{N} \hat{D}\right)\left(\tanh ^{n} \hat{D}\right) / n!$, for $0 \leq n \leq N$, which are readily computed iteratively. In this example we have

$$
Y=\left[\begin{array}{ccccc}
1 & 0 & 4 & 0 & 40 \\
0 & 1 & 0 & 10 & 0 \\
0 & 0 & 1 & 0 & 16 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

## 6 Further aspects

- General $p, q$. Polynomials with parameters $p$ and $q$ arise from Bernoulli trials where the probability of success is $p$, with $q=1-p$. They arise as well when working over finite fields, in which case $q$ is the number of elements of the field.
- Multivariate polynomials are orthogonal with respect to corresponding multinomial distributions. Functions of several variables correspond to random walks in higher dimensions.
- Positivity results hold for transforms of polynomial functions.
- Variety of applications is seen in the references.


## References

[1] N.M. Atakishiyev, G.S. Pogosyan, and K.B. Wolf, Finite Models of the Oscillator, Physics of Particles and Nuclei, Suppl. 3, 36:521-555, 2005.
[2] N. Botros, J. Yang, P. Feinsilver, and R. Schott, Hardware Realization of Krawtchouk Transform using VHDL Modeling and FPGAs, IEEE Transactions on Industrial Electronics, 496 (2002)1306-1312.
[3] Ph. Feinsilver and R. Schott, Finite-Dimensional Calculus, Journal of Physics A: Math.Theor., 42:375214, 2009.
[4] F.J. MacWilliams, N.J.A. Sloane, Theory of error-correcting codes, North-Holland, 1977.
[5] G. Szëgo, Orthogonal Polynomials, AMS, 1955.
[6] P.-T. Yap and R. Paramesran, Image analysis by Krawtchouk moments, IEEE Transactions on image processing, 12:1367-1377, 2003.

