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CHAPTER 1

Introduction

A graph consists of edges connecting vertices. A tree is a connected graph
containing no cycles. A spanning tree is a subgraph of a graph that contains all
its vertices and is itself a tree. It is the aim of this text to present various methods
counting the number of spanning trees in special families of graphs as depicted
below. The following table lists some families of graphs together with references to
the sections where we calculate their number of spanning trees.

The material is organized as follows: In the second chapter, we give definitions
and prove some very basic results of graph theory, which will be needed throughout
the rest of the text.

Furthermore, many operations of graphs are presented which allow the compo-
sition of larger graphs from smaller ones, or transform complicated structures into
less complicated. Especially in Chapter 5, Section 2 we will present formulas that
calculate the spanning trees of a graph which can be obtained from smaller ones by
some operation, if enough is known about the structure of the smaller graphs.

The third chapter is devoted to some other mathematical objects, which can be
shown to be intimately related to the spanning trees of a graph. For example, given
any planar graph G , i.e. a graph which can be drawn in the plane, we can construct
another graph that has as many perfect matchings — spanning subgraphs in which
every vertex is connected to exactly one other vertex — as G has spanning trees.

The last two chapters contain the main part of the text. In Chapter 4, we present
some purely combinatorial methods. Although some of them are quite aesthetic,
their application is limited to very few, special families of graphs.

Using the more algebraic methods of the last chapter — heavily relying on the
famous Matrix-Tree-Theorem— we can compute the spanning tree number of many
graphs in a very straightforward manner.

We will make use of the following notations: Given a subset S of a set & we will
write S¢ for the complement of S in 8. The entry in row ¢ and column 5 of a matrix
M will be denoted by M; ;. Similarly, M ¢ denotes the restriction of M to the
rows indexed by R and the columns indexed by C. If M is a square matrix we will
only write Mg for the minor of M given by the rows and columns indexed by R. In
Table 1 of Chapter 2, Section 1 some more notational conventions are listed.
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Notation

References

Complete graph
Complete multipartite graph
Circle

Ladder

Cyclic Ladder
Mobius Ladder
Square of a Circle
Fan

Wheel

Even and Odd Aztec Rectangle

Wn

ERpn,ORmn

Chapter 4, Corollary 3.2, page 42
Chapter 5, Example 2.17, page 73
Chapter 4, Example 3.10, page 50
Chapter 5, Example 2.9, page 67
Chapter 5, Lemma 2.10, page 69
Chapter 4, Example 1.1, page 34,
Chapter 5, Example 2.19, page 74
Chapter 5, Example 4.1, page 81
Chapter 4, Example 2.2, page 40
Chapter 4, Example 2.3, page 41
Chapter 4, Example 2.4, page 41
Chapter 4, Example 1.2, page 35,
Chapter 4, Example 3.15, page 52
Chapter 5, Example 2.11, page 70
Chapter 4, Example 1.3, page 35,
Chapter 4, Example 3.16, page 52
Chapter 5, Example 2.12, page 70
Chapter 3, Remark 5, page 33,
Chapter 5, Example 2.23, page 78
Chapter 5, Example 4.3, page 83

TABLE 1. Some special families of graphs

FIGURE 1
The complete graph Kj

FIGURE 2

The complete bipartite graph

K3,
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FIGURE 4
FIGURE 3 The fan Fj
The wheel W5

SRe

FIGURE b FIGURE 6
The circle Cj The square of a circle C?

FIGURE 7 @

The ladder Ls

FIGURE 8
The cyclic ladder Ko & Cj;
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FIGURE 9. The Mobius ladder Mj

FI1GURE 10 Ficure 11

The even Aztec rectangle The odd Aztec rectangle
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CHAPTER 2

Preliminaries

1. Basic Graph Theory

In this section we will define what a graph is, and give definitions for the most
important concepts in graph theory. As examples, we will use the graphs depicted
in Figures 1 and 2 below.

DEFINITION 1.1. A directed graph, abbreviated digraph, G consists of a set of
vertices V(G) and a set of arcs E(G). Every arc (u,v) joins two — possibly identical
— vertices v and v. We say (u,v) is incident from u and incident to v, to indicate
the direction of the arc. Alternatively, we will call u the tail and v the head of (u,v).
Arcs of the form (u,u) are called loops. If there are two or more arcs incident from
a vertex u and incident to a vertex v, these arcs are called parallel to each other.

An undirected graph, for short graph, is a digraph with symmetric incidence
relation: if (u,v) is in the arc-set of G, then also (v,u). Hence, we call such a pair
of arcs an edge incident to u and v. In the following we will use the term ‘edge’ for
both edges and arcs.

Two vertices joined by an edge are called adjacent.

A weighted (di)graph is a (di)graph together with a weight-function on its edges
w: E(G) — R. The weight of a graph is the product of the weight of its edges. We
will identify an unweighted (di)graph with a weighted (di)graph by giving each edge
weight one.

We will usually denote the number of vertices by p and the (weighted) number
of edges by g¢.

The underlying graph of a digraph G has the same vertex-set as GG, and every
arc of G is replaced by an edge connecting the same vertices as the arc.

An orientation of a graph G is a digraph é, so that the underlying graph of G
is equal to G.

EXAMPLE. The (unweighted) digraph G shown in Figure 1 has vertex set V(G) =
{r,u,v,w} and edge set &(G) = {(u,v), (v,u), (r,u), (v,r), (r,r)}. Hence p = 4 and
q = 5. It has a loop attached to vertex r, but no parallel edges.

Its underlying graph G is depicted in Figure 2. Note that in G, the two edges

joining vertices u and v are parallel.

DEFINITION 1.2. The neighbourhood N¢(v) of a vertex is the set of vertices
adjacent to it.

The degree d¢(v) of a vertex v in a graph G is the number of edges incident to
v, where loops are counted twice. In weighted graphs the degree of a vertex is the
sum of the weights of the edges incident to v.

digraph
graph
incidence
head, tail
adjacency
loop

parallel edges
weighted
(di)graph
underlying
graph
orientation of a
graph

neighbourhood
successors
predecessors
degree
indegree
outdegree
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FIGURE 2
The underlying graph G of
the digraph in Figure 2

FIGURE 1 .
An example digraph G

Notation Meaning
V(G), p set and number of vertices of G
E(G), q set and (weigthed) number of edges of G

Nea(v), N&(v), N5 (v)  neighbourhood, successors and predecessors of vertex v in G
da(v), d%(v), d&(v) (weighted) degree, out- and indegree of vertex v in G

J(G), t(G) set and number of spanning trees of G

Fr(G), fr(G) set and number of spanning forests of G' with roots in R
HCG H is a subgraph of G

C(@), ¢(G) set and number of components of G

TABLE 1. Some graph theoretic notations

In a digraph the set of successors (predecessors) N%(v) (N%,(v) is the set of
vertices succeeding (preceding) a given vertex.

The indegree di,(v) (outdegree d%(v)) of a vertex v in a digraph G is the number
of arcs incident to (incident from) v. Directed loops are counted once. Again, in
weighted digraphs the indegree (outdegree) of a vertex is the sum of the weights of
the arcs incident to (incident from) to v. For undirected graphs it will be convenient
to put d-(v) = d%(v) = dg(v).

DEFINITION 1.3. Let G be any (weighted) (di)graph. Then its adjacency ma-
triz. A has rows and columns indexed by the vertices of G and entries a,, =
> e—(upee(e) we) for u,v € V(G), where w : £(G) — R denotes the weight function
on G.

The degree matriz D of a (weighted) (di)graph G has nonzero entries only along
its main diagonal. For any vertex v € V(G) they are defined by

Q- d,(v) for digraphs
""" ldg(v) for graphs.
The Kirchhoff matriz or Laplacian of a graph G is defined as C =D — A.

adjacency
matrix

degree matrix
Kirchhoff
matrix
Laplacian
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REMARK. Note that the indegrees of a digraph are given by the column sums
of its adjacency matrix. Similarly, the outdegree of a particular vertex is the sum
of all entries of the row it is in. Of course, we could also have defined the degree
matrix of a digraph using the outdegree of its vertices.

DEFINITION 1.4. The weight matriz X of a weighted (di)graph G is indexed by
the edges of G and has nonzero entries only along its main diagonal: z.. is the
weight of the edge e. If G is not weighted, X is the identity matrix.

DEFINITION 1.5. Let G be a (loopless) digraph. Then its incidence matriz B
has rows indexed by the vertices of G and columns indexed by the arcs of G. The
entry corresponding to vertex u and arc e is defined to be

-1 e=(u,v)
bue =<+l e=(v,u)

)

0 otherwise.

REMARK. By definition, B has exactly one positive and one negative entry in
each column. The number of positive (negative) entries in each row equals the
indegree (outdegree) of the corresponding vertex.

PROPOSITION 1.6. Let G be a loopless (weighted) graph. Let B be the incidence
matriz of an arbitrary orientation of G. Let X be the weight matriz of G. Then we
have

C=B X B

where C is the Kirchhoff matriz of G. -
For an arbitrary (weighted) digraph let B be the matriz obtained from its inci-
dence matriz B by replacing all negative entries with zeros. Then

C=B-X-B'
Proor. Clearly,

(B - X Bt)(u,v) = Z bu,e *Tee - bv,e-
ecé(Q)

Furthermore we have

+1 if u = v and e is incident to u

bue-bye =14 —1 ife=(u,v) ore=(v,u)

’

0 otherwise,

which yields the desired result.
Analogously, for digraphs we have

(B - X 'ﬁt)(u,v) = Z bu,e *Teye - bv,ea
ecé(Q)

weight matrix

incidence
matrix
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and

+1 if u = v and e is incident to u
bue bye =14 —1 if e = (u,v)

) )

0 otherwise.
O

REMARK. F. R. K. Chung and R. P. Langlands defined in [13] the weight of a
vertez and edge weighted (di)graph G as

w@= [ w@wlu,v),
(u,w)EE(Q)

where the weight of vertex u is w(u). Accordingly, the in-degree of a vertex is defined
as

dgw) = Y www(u,v),
(u,0)EE(Q)
and the adjacency matrix as A with
Ay = Z w(e)vw(u)w(v).
e=(u,v)€E(G)
We will see in Chapter 5, Section 1 that this definition enables us to derive a gen-

eralized version of the famous Matrix-Tree-Theorem.

DEFINITION 1.7. A graph is called Eulerian, if all vertices have even degree, a  Eulerian,
(weighted) digraph is called Eulerian, if in all vertices in- and outdegree coincide. jueh
A (di)graph is r-regular if all of its vertices have (in)degree 7. semiregular

A graph is bipartite, if it is possible two separate its vertex set in two parts, so graph
that edges join only vertices belonging to different parts.

A graph is semiregular of degrees r; and ry if it is bipartite and all vertices of

one part have degree r1, all vertices of the other part have degree ro.

LEMMA 1.8. For any (weighted) digraph G we have
> dolw)= ) dgv) =g
veEV(Q) veV(G)
where q is the (weighted) number of edges. For (weighted) graphs we have
> da(v) =2g.
veV(G)
Again, q is the (weighted) number of edges.

PROOF. This is because the arcs are in one to one correspondence to the vertices:
In the first sum an arc corresponds to the vertex it is incident to, in the second to
the vertex it is incident from. In a graph, every edge is counted exactly twice: Either
it is incident to two vertices or it is a loop. O



1. BASIC GRAPH THEORY 11

DEFINITION 1.9. Given a (di)graph G, a chain is a sequence of vertices and
edges of the form (vy,e1,ve,€9,...,ep_1,vy), with {v,vs,...,v,} CV(G) and with
{e1,€2,...,en—1} C E(G), so that e; joins v; and v;41 for i € {1,2,...,n — 1}. Note
that we do not pay attention to the direction of the arcs here. Furthermore, it is
possible that some vertices or edges occur more than once. If v;1 = v, the chain is
said to be closed.

Two closed chains are considered equal, if the succession of arcs is the same in
both chains — we consider e; to be a successor of e,,.

A walk in a digraph is a chain with arcs of the form e; = (v;,v;+1) € E(G) only.
For graphs we use walk as a synonym for chain.

A walk with all vertices distinct is called a path. In this case the edges are all
distinct, too.

A circuit is a closed walk, a cycle is a closed path that contains at least one edge.
Note that contrary to a circuit, a cycle cannot contain another cycle as a proper
subset.

An FEulerian tour is a circuit containing every edge of G exactly once.

FIGURE 3. The path P;

REMARK. The path P, depicted above and the circle C,, (see Figure 5 in the
introduction) are probably the two most basic graphs. Many other families of graphs
will be defined in terms of the path and the circle.

DEFINITION 1.10. A (di)graph is connected if any two vertices can be joined by
a chain. It is strongly connected if any two vertices can be joined by a path. It is
unilaterally connected if for any two vertices u and v there is either a path from u
to v or a path from v to u.

REMARK. In graphs the terms connected and strongly connected coincide.

DEFINITION 1.11. A subgraph H of a (di)graph G is a (di)graph with edge-set
E(H) C €(G) and vertex-set V(H) C V(G). A subgraph is spanning if it has the
same vertex-set as the original (di)graph.

For a set of vertices V' C V(G) the vertez-induced subgraph of a (di)graph G has
vertex-set ¥V and maximal edge-set A C £(G). In other words, an arc of G is in the
induced subgraph if and only if both vertices it connects are in V. It is also called
restriction of G to V' and will be denoted by G|,

For a set of edges E C &(G) the edge-induced subgraph of a (di)graph G has
edge-set F and minimal vertex-set V' C V(G). Hence a vertex is in the induced
subgraph if and only if it is incident to or from some arc in E. This subgraph is also
known as the restriction of G to E and is denoted by G|.

REMARK. Digraphs are never considered as subgraphs of a graph.

(closed) chain
walk

path

circuit

cycle

Eulerian tour

connected
strongly
connected
unilaterally
connected

subgraph
vertex-induced
edge-induced
graph,
restriction
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DEFINITION 1.12. A component of a (di)graph is a maximal connected vertex-
induced subgraph.

A bridge is an edge of a (di)graph whose removal increases the number of com-
ponents.

REMARK. Sometimes maximal strongly connected vertex-induced subgraphs are
considered. For our purposes, however, we do not need this concept.

DEFINITION 1.13. A graph T is a tree if one of the following equivalent condi-
tions hold:

e T is connected and contains no cycles.
e T is connected and the number of edges is the number of vertices less one.
e Any two vertices of T" are joined by a unique path.

One vertex can be chosen to be a root, we then speak of a rooted tree.

A digraph T is an arborescence or out-tree, if its underlying graph is a rooted
tree and for every vertex v there is a unique path from the root to v. Similarly, we
call a digraph T an in-tree, if its underlying graph is a rooted tree and for every
vertex v there is a unique path from v to the root.

In the following we will use the term t¢ree for both trees and arborescences.

A (di)graph F is a forest if each of its components is a (rooted) tree (an arbores-
cence).

Vertices of a forest with degree one (outdegree zero), not roots, are called leaves.

PROOF OF EQUIVALENCE. The existence of two different paths joining any two
vertices of 1" is equivalent to the existence of a cycle in 1", because the concatenation
of two different paths is a cycle and, conversely, in a cycle there are always two
different paths joining distinct vertices.

Suppose that T is connected and contains no cycles. Then there must be a
vertex with degree one. Deleting this vertex and its incident edge we obtain a graph
which is still connected and does not contain a cycle, but has fewer vertices. Hence
we can repeat this procedure, until we obtain the graph consisting of an isolated
vertex, which is the only connected graph without edges. In every step we deleted
one vertex and one edge, hence, after deleting all vertices but one, there is no edge
left. Therefore, in a tree the number of edges is the number of vertices less one.

Now suppose that 7" is connected and ¢ = p—1, where p is the number of vertices
of T and ¢ is the number of edges of T. Then T contains a spanning subgraph 7"
which contains no cycles and has p’ = p vertices and ¢’ < ¢ edges. By the hypothesis
and the preceding argument we have ¢ = p—1 = p’' — 1 = ¢/, i.e., T' contains as
many edges as T, which implies that 7" = T'. Therefore, T contains no cycles. [

REMARK. Given any graph, we are interested in the number of spanning trees it
contains as subgraphs. Note that in digraphs, the number of spanning trees rooted at
a particular vertex is generally not the same as the number of spanning trees rooted
at a different vertex. Therefore, we will write ¢, (G) for the number of spanning trees
of G rooted at vertex r.

In graphs, of course, the number of spanning trees does not depend on the root
chosen. We will show in Chapter 3, Section 3 and in Chapter 5, Section 1, that this

component
bridge

tree
arborescence
forest

roots

leaves
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is also true for Eulerian digraphs. Therefore, we will often refer to the number of
spanning trees of a graph or Eulerian digraph G as t(G).

COROLLARY 1.14. In an unweighted tree T" we have

S (dr(v) —1) =p—2,
veT

where p is the number of vertices of T'. More generally, if we consider T as a bipartite
unweighted graph with parts Ty and Ty with p1 and po vertices respectively, we have

Y (dr(v) =1) =p2 —1

veTY

and the obvious counterpart for Ty. Analogously, in an unweighted forest F' we have

Y (dr(v) = 1) = pz — c(F).

veEF]

ProoFr. Take T to be rooted at an arbitrary vertex v € 17. Then vertices with
even distance to v must be in 77, those with odd distance to v are in T5. Think of T’
as a directed graph with all edges directed away from the root. Then the outdegree
of any vertex u € T} simply counts the number of vertices in the other part with
predecessor u. Clearly, every vertex in 75 has exactly one predecessor. Summing up
over all vertices in 17 we get

> dg(v) = po.

u€eT)
But clearly, the outdegree of the root is just its degree in 7" and the outdegree of any
other vertex is its degree in 1" minus one. Now the result follows by substituting in
the sum above. U

DEFINITION 1.15. A cutset of a graph G is a set of edges whose removal from G
increases the number of components of G. A cocycle is a minimal cutset. A cotree
C of a graph G is a subgraph of G, so that G|8(C)c is a spanning tree of G.

2. Operations on Graphs

Below some operations on graphs are defined in terms of their Laplacian ma-
trices. (See Definition 1.3) Furthermore, we will explain each operation by giving
a description of the set of vertices V and the set of edges € of the resulting graph.
Note, however, that these descriptions often apply only to simple, undirected graphs
without loops or multiple edges.

Furthermore we define some families of graphs, also those depicted in the intro-
duction.

DEFINITION 2.1. For (weighted) (di)graphs G and H with identical vertex sets
V(G) = V(H) we define their union G + H and their product G - H as follows: The
edge set of the union is E(G) U E(H), the edge set of the product is

{(u,w) : (u,v) € E(G) and (v,w) € E(H)}.

cutset
cocycle
cotree

union, product
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Name Notation Reference

Union G+ H

Product G-H

Direct Sum G+ H Chapter 5, Lemma 2.8, page 66
Complement G Chapter 5, Lemma 2.8, page 66
Complete Product Gvyv H Chapter 5, Lemma 2.8, page 66
Kronecker sum GoH Chapter 5, Theorem 2.18, page 73
Kronecker product G H Chapter 5, Theorem 2.18, page 73
Lexicographic Product G[H.,H>,...,H,] Chapter 4, Theorem 3.5, page 46
Line Graph £(G) Chapter 5, Proposition 2.16, page 72
Subgraph Deletion G\ H

(HCG)

Contraction G-, Gv Chapter 4, Section 1, page 34
(ECE&(G@)or VCV(G))

Restriction Glgs Gy Chapter 4, Section 1, page 34

(E CE(G) or V C V(@)
TABLE 2. Some operations on graphs

In terms of the Laplacian matrices of G and H we have
Caing =Cq+ Cpg and
Cqn=Cg-Cp.

EXAMPLE 2.2. The square of a circle C2, see Figure 6 in the introduction, can
be defined — nomen est omen — as C,, - C),.

DEFINITION 2.3. The direct sum G + H of G and H is obtained by ‘drawing’
the two (weighted) (di)graphs side by side:

V(G + H) = V(G) UV(H) and
&(G+ H) = &(G) U E(H).

In terms of the Laplacian matrices of G and H we have
Cqs O

EXAMPLE 2.4. A graph for rather technical purposes is the graph O,,, which is
the direct sum of n isolated vertices.

DEFINITION 2.5. The complement G of a (weighted) (di)graph can be defined
by

Casz—J—Cg,

where J is the matrix which has all entries equal to one. -
For a simple graph G, i.e., a graph without multiple edges (arcs) or loops, G is
the graph with the same vertex set as G and edge set E(K)) \ E(G):

G = Kplie(y)e

direct sum

complement
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FIGURE 4. The star Sx

ExAMPLE 2.6. The complete graph K,,, see Figure 1 in the introduction, is the
graph on n vertices, where every pair of distinct vertices is connected by exactly one
edge. It can be also defined as the complement of the graph O,.

DEFINITION 2.7. The complete product G 7 H of (weighted) (di)graphs G and
H is obtained from the direct sum of G and H by additionally joining every vertex
of G with every vertex of H. Hence

E(GEvH)=EG)UEH)U{(u,v) :ueV(G) and v e V(H)}

In terms of the Laplacian matrices of G and H we have
_(Ac T _
Cayn = ( J AH> =Caiw

ExamMpLE 2.8. The complete product enables us to define many important fam-
ilies of graphs: The complete bipartite K, ;,, see Figure 2 in the introduction, or,
more generally, the complete multipartite graph Ky, n,...n, can be defined as the
complete product of the graphs Oy, Op,, ... On,t Kpgno,oonm = Vie1Ony, -

The fan F),, see Figure 4 in the introduction, can be defined as K5/ F,,. Similarly,
the wheel W,,, see Figure 3 can be defined as K v/ C),.

Another important graph, the star S, see Figure 4 above, is the complete prod-

uct of a single vertex with the graph O,, consisting of n isolated vertices.

DEFINITION 2.9. The Kronecker product G ® H and the Kronecker sum G & H
of (weighted) (di)graphs G and H have as vertex sets the cartesian product V(G) x
V(H) of the vertex sets of G and H. We will denote the vertex in V(G) x V(H)
corresponding to the vertices u € V(G) and v € V(G) by uv.

In terms of the Laplacian matrices of G and H we can define

Caon =Ca ® Cp and
CG@H:CG®I+I®CH.

complete
product

Kronecker
product
Kronecker sum
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FIGURE 5. The grid graph P; & Py

If G and H are (di)graphs without parallel edges, the set of edges of the Kron-
ecker product £(G ® H) is

{(uz,vy) : (u,v) € E(G) and (x,y) € E(H)},
and the set of edges of the Kronecker sum E(G & H) is
{(uz,vy) : (u= and (z,y) € E(H)) or (z =y and (u,v) € &(G))}.

The preceding two operations are special cases of the so called NEPS of graphs,
which is short for non-complete extended p-sum, a term coined by Cvetkovié, see [15]:
The NEPS G with basis B of (weighted) (di)graphs G, G, ..., G}, has as its vertex

set the cartesian product of the vertex sets of G, Go, ..., G).
In terms of the Laplacian matrices of the graphs G'1, Ga, ..., G, we have
Co=> Al @A)
BeB
Therefore, if G1, G, ..., G)p are (di)graphs without parallel edges, two vertices

(u1,ug,...,up) and (vy,ve,...,vy,) of the NEPS G are connected if and only if there
isa 8 € B so that u; = v; if 5; = 0, and (ui,vi) S S(GZ) if 6; = 1, for all
ie{l,2,...,p.

The Kronecker sum is equivalent to the NEPS with basis {(1,0),(0,1)}, the
Kronecker product to the NEPS with basis {(1,1)}.

ExAMPLE 2.10. It is a remarkable fact that the Kronecker product of two con-
nected graphs need not be connected. In fact, if the graphs are both bipartite, their
Kronecker product has always two components, see also Theorem 2.21 in Chapter 5.

The even and odd Aztec rectangles ER,, ;, and OR,, ;, depicted in Figures 10
and 11 in the introduction, are the two components of the Kronecker product of two
paths P, and P,,. ER, ,, is the component of P, ® P,, which has an even number
of vertices, OR,, ;;, has an odd number of vertices.

Clearly, the Kronecker sum of connected graphs is always connected. The ladder
Ly, see Figure 7 in the introduction, is the Kronecker sum of K» and the path F,.
More generally, the grid graph is the Kronecker sum of two paths P, and P, see
Figure 5 above.

NEPS
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DEFINITION 2.11. The lexzicographic product, also called local join is defined for
a (weighted) (di)graph G and (weighted) (di)graphs Hy, Ho, ..., Hp and is denoted
by G [Hl, HQ, ce ,Hp].

If G is a (di)graph without parallel edges, we construct G [Hi, Ho,..., Hp] as
follows: Replace in a graph G on p vertices vertex v by the graph H,, where v €
{1,2,...,p}, then join all vertices of H, and H,, whenever (u,v) € £(G). We will
denote vertex ¢ in the subgraph H,, by ui. Hence, the vertex set of G [Hy, Ha, ..., H)]
is U'_, V(H,) and its edge set is

{(uz,vy) : (u,v) € &(G) or (u=v and (z,y) € E(Hu))}.
For general (weighted) (di)graphs G and H,, H», ..., H,, we define
Ay,

AG [Hl’Hz""’HP] - ((AG)uerpuva)’u,,UEV(G) + . )
Ap

P

where p, is the number of vertices of the graph H,. The degree of a vertex ui is

e 1y H,ot,) (W) = D po+di, ().
(u,w)EE(Q)

Note that the lexicographic product K, [Hi, Hy,...,H)y] is equivalent to the
complete product of the graphs Hy, Hs, ..., H,.

DEFINITION 2.12. The line graph £(G) of a graph G has as vertex set the set of
edges of G. Two vertices of £(G) are joined, if they are incident in G. Hence:

V(L(G)) = &(G) and
E(L(Q)) = {(uz,uy) : u,z,y € V(G)}.

The adjacency matrix of the line graph of a graph G can be expressed in terms of
the incidence matrix B of G:

Ag) =BgBg — 2L

DEFINITION 2.13. A subgraph H C G is deleted from G by deleting all edges
and vertices of H and all edges which were incident to some vertex in H. Hence

V(G\ H)="V(G)\ V(H) and
E(G\H)=¢E(G)\{(u,v) :ueV(H)orveV(H)}.

The restriction G|y, (G],,) of a graph G to a set of edges E C £(G) (vertices
V C V(@G)) is synonymous to the edge (vertex)-induced subgraph of G induced by
E (respectively V') and was already explained in Section 1, Definition 1.11.

The contraction G-g of a graph G to a set of edges E C £(G) has as vertex
set all the vertices of G which are not incident to an edge of E¢ together with one
vertex for each component in G|g.. Two vertices in G-g are connected by as many
edges as there are edges connecting the corresponding sets in G.

The contraction G-y of a graph G to a set of vertices V' C V(G) has as vertex
set V plus an additional vertex r, which represents the vertices in V¢. Two vertices
in V are connected by as many edges as there are edges connecting them in V', a

lexicographic
product
local join

line graph

subgraph
deletion

restriction

contraction
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vertex v € V is connected to r by as many edges as there are in G connecting v with
some vertex in V¢ Finally, the vertex r has as many loops as there are edges in G
connecting vertices within V°.



CHAPTER 3

Equivalent Objects

In this chapter we will show that there are many combinatorial objects which
are intimately related to the spanning trees of a graph. Among those there are well
known objects as Eulerian tours, spanning forests and perfect matchings. We will
also deal with duality in graphs and the so-called Abelian avalanche model, also
known as chip-firing game, defined on a graph.

Note that there is even a connection to algebraic topology, although we cannot
cover this here: It is possible to associate certain graphs G with 3-manifolds, so that
the order of their first homology group is equal to the number of spanning trees. [30]

1. Duality

Duality of graphs is a concept which appears in many areas of combinatorial
graph theory. It is also of significance to the problem of counting spanning trees
of undirected, unweighted graphs. For giving an exact definition, we need some
prerequisites:

The following very important concept will accompany us throughout most of the
sections:

DEFINITION 1.1. An embedding of a (di)graph on a surface S is an injective
function 7 that maps each vertex v onto a point i(v) on the surface and every edge
(u,v) onto a path with endpoints i(u) and i(v). It is required that no two paths cross
each other, they may only touch in their endpoints. Furthermore, each component
of S\ i(G) has to be homeomorphic to an open disc. In the following we will identify
the paths on the surface with the corresponding edges of the graph and the endpoints
of the paths with the corresponding vertices. Note that a graph usually has many
embeddings on one surface.

A face of a (di)graph embedded on a surface S by a function 7 : G — S is a
component of S\ i(G). By Euler’s formula we have

x(8)=p—q+/,

where x(S) is the Euler characteristic of S, p is the number of vertices, ¢ is the
number of edges and f is the number of faces of G.

A (di)graph is called planar if it has an embedding onto the plane or, equiva-
lently, onto the sphere. In planar graphs we have p — g+ f = 2.

The dual graph G* of an undirected planar graph with respect to some embed-
ding has the same edge set as G and a vertex for each face of GG, where an edge
connects the faces it bounds.

19
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REMARK. Let G be a graph embedded on the plane. When drawing the dual of
G, it is often easier to draw the vertex corresponding to the unbounded face of G as
a circle, which surrounds the other vertices of G*. An example is given in Figure 1
of Section 5 on page 32.

THEOREM 1.2. Let G be an undirected, unweighted planar graph G and let G*

be its dual. Then the edges of each cotree of G form a spanning tree of G* and vice
versa. Hence, t(G) = t(G*).

PROOF. A cotree of G has ¢ —p+ 1 edges, by Euler’s formula, this equals f — 1.
Hence we only have to show that the edges of a cotree of G do not contain a cycle
in G*. But this is impossible, because by the Jordan-Curve-Theorem such a cycle
would divide the sphere into two components, where both would contain a face
of G*, i.e., a vertex of G. Any path in the spanning tree of G joining these two
vertices would have to cross the cycle, i.e., contain an edge of the cotree. This is a
contradiction. O

Hence, when trying to determine the number of spanning trees of a given graph,
it often makes sense to consider its dual. If the number of vertices of a planar graph
is larger than its number of faces, its dual is smaller and therefore more accessible
to numerical methods.

2. Chip-Firing Games on Graphs

In this section we present a (solitary) game played on a graph G known as ‘chip
firing game’ or ‘avalanche model’. We will define certain ‘recurrent’ configurations
of this game and show, that the number of these configurations coincides with the
number of spanning trees of G. Most proofs are taken from [4], [5] and [18].

DEFINITION 2.1. A chip-firing game can be defined on a (di)graph G with pos-
itive edge weights. It depends on non-negative values s,, l, and ¢, defined on every
vertex v of G. The diagonal matrix S with S, , = s, is called the dissipation matriz,
the vector 1 = (l),ev(q) is called a load vector. A vector q = (gv)vev(q) is called a
configuration of the game.

Given a configuration q, a vertex v is stable, if q, < dg(v) + s, (in digraphs
@ < d5(v) + s,). Otherwise, v is unstable.

Accordingly, a configuration q is stable, if all vertices are stable. The set of
stable configurations will be denoted by 8(G).

The basic action in this game is the firing of an unstable vertex of the graph: Let
q be an unstable configuration. For an unstable vertex v we define the configuration
q’ after the firing of v as follows: ¢!, = g, +w(u,v) for vertices u # v, where w is the
weight function of G, and ¢}, = g, — da(v) — s, (in digraphs ¢, = g, — d% (v) — s,).

In other words, the vertex v which is fired passes the amount of w(u,v) to every
vertex u of its neighbourhood N¢(v) (in digraphs, to every vertex w of its set of
predecessors N%(v)). The firing vertex itself looses the amount it distributes and
additionally its dissipation s,. Stable vertices cannot be fired.

More generally, a sequence of vertices V = (vy,ve,...,v,) is called a legal se-
quence for the configuration q, if, starting at this configuration, the vertices can be

chip-firing game
dissipation and
load at a vertex,
configuration of
the game

(un)stable
vertex

firing of a
vertex

legal sequences
representative
vector
transition
matrix
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fired in this order. The representative vector of V is the vector v, where v(v) is the
number of occurrences of the vertex v in V.
The configuration q' after the firing of a legal sequence V is given by

(+) qd =q-—Av,

where A = C + S, with C the Kirchhoff matrix of G. We call A the transition
matriz of the game.

We call a game weakly dissipative, if for every non-dissipative vertex v, i.e., a
vertex v with s, = 0, there is a path from a dissipative vertex u, i.e., a vertex u with
Sy > 0.

LEMMA 2.2. In a weakly dissipative game, given a vector q with non-negative
components, there is a vector q' with non-negative components so that

(*) Ad = q.
In particular, the matriz A is nonsingular.
PrOOF. We will construct a sequence of approximate solutions that converges

towards a solution of Equation (x).
Let qp = 0. Given q, for n > 0, let v,, be a vertex of G, so that (q — Aqy),, is

maximal. Let
7(q£Aq")“" for v = v,
on(v) = e .
0 otherwise.

We then define q,41 = q,, + d,. We now show that the sequence (q,),>0 converges
towards a solution q' of Equation (x).

We have defined q,,+1 so that (@ — Adp+1)y
we have

() (@—Adut1)y = (@ — Ay — Adn)y

vanishes. Furthermore, for v # v,

n

(q - AQn)vn
A'Un;'Un

Therefore, we inductively see that all components of q — Aq,, are non-negative.

For two vectors q and q’ we define a distance d(q,q’) = ZUEV(G) (@ —4q')y|- We
have to show that d(q, Aq,) tends to zero as n approaches infinity. We can express
the distance between q and Aqp41 as

d(q,Aqn1) = Y (@ — Agni)y|
veV(Q)

= Z (@ —Agqn — Adp)y
veV(G)

= d(q, Aqn) — Su,

= (a— Aqy)y + w(v,vy,)

(q - Aqn)vn
A'Uny'un ‘

Because v, was chosen so that (q — Aqy),, is maximal, we have

n

(# % *) d(q,Aq,) = Y (a—Ady)y <p(a— Adp)y,,
veV(Q)

(non-)
dissipative
vertex, weakly
dissipative
game
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where, as always, p is the number of vertices of G. Thus we obtain the estimate
Sy

d(d, Aqp+1) < d(q,Aqy) (1 - 7") :
p A'Uny'un

If v, is a non-dissipative vertex, d(q, Aq,+1) = d(q, Aq,). For dissipative ver-
tices, however, we have

S'U . S'U
0<|(l—————) < |1— min < 1.
( p A'Uny'Un> ’UEV>(%;) p A'U,'U
Sv

Note that A =1 —min,cy(q) is independent of n. We now have to distinguish

5y >0
between two possible cases: If there is an infinite subsequence (v, )n>0 of (Vn)n>0,

so that v, is dissipative for all n, we have d(q,Aq,) > N'd(q,AQm,). Thus
d(q, Aqy,,) tends to zero as n approaches infinity, which is what we wanted to
show.

Suppose that this is not the case and that there is an mg so that all vertices vy,
with n > myg are non-dissipative. We show, that in this case d(q, Aq,,,) must be
Zero.

Let u be a non-dissipative vertex. Because the game is weakly dissipative, u has
a predecessor. Let u' be a predecessor of w.

For each n > my with v, = u, we have because of Equation xx

Sy
p Av,v

-A
(@ = Adu ) = (@ - Aay)y + w(e,u) GBI
Au,u
and because of Inequality (x * %)
d(q,A

We assumed that for n > my all vertices v,, are non-dissipative, therefore

) d(q, Aqm,)
—A > (q— A P
(@ = Adpt1)w = (@ — Adgp)y +eg3el(rcl:)w(e)p max,ev(q) Ao,

Recall that all the weights are positive. Hence, if d(q, AqQ.,,) > 0, the sequence
((q — Aqn)u:)n>m0 tends to infinity. Because of

(@—Adn)w =d(a,Aq,) — Y (a— Aqn)s < d(q, Agy)
vFu’

this is absurd and d(q, Aq,,) must be equal to zero. O

LEMMA 2.3. If G is weakly dissipative, then every configuration passes over into
a stable configuration after a finite number of firings.

PRrROOF. Throughout the firings, the total amount held at the vertices cannot
exceed its initial value. In particular, there is an upper bound on the amount held
at any vertex.



2. CHIP-FIRING GAMES ON GRAPHS 23

Suppose there is an infinitely long sequence of firings. Then, since the number
of vertices is finite, there is a vertex v which is fired infinitely often. This cannot be
a dissipative vertex, because then the game would loose the amount s, > 0 at every
firing of v, but the total amount of the game is finite.

Suppose that v is a non-dissipative vertex. Since G is weakly dissipative, there is
a path from a dissipative vertex r to v. Since v is fired infinitely often, its predecessor
v’ on the path to r receives an infinite amount. Therefore, as the amount held at
any vertex is bounded, v' must be fired infinitely often as well.

Inductively, we see that each of the vertices of the path, including r must be
fired infinitely often. This is a contradiction. O

DEFINITION 2.4. A sequence of firings V = (vy,v,...,ux), v; € V(G) for i €
{1,2,...,k}, that transforms an unstable configuration q into a stable configuration
is called an awvalanche starting at q.

We will show, that all avalanches starting at a given configuration q, terminate
at the same stable configuration q'. This is the so-called Abelian property of the
avalanche model. We will follow the argument of Biggs [4], who uses a mixing
technique:

Let U be a legal sequence for the configuration q and let v be a vector with
v(v) > 0 for all vertices v. Then UV is the sequence obtained from U by deleting the
first v(v) occurrences of every vertex v from U. If v(v) is greater than the number
of occurrences of v in U, then all occurrences are deleted.

LEMMA 2.5. Let U and V be legal sequences for a configuration q, with repre-
sentative vectors w and v. Then the sequence Z = (V,UV) is also legal for q.

PROOF. Let ' = q— Au. Suppose that UV is legal for ' up to the point where
the vertex v is about to be fired for the i*" time. Denote the configuration at this
point with p¥. Let p be the configuration which occurs just before the corresponding
firing of v in U, which is the (v(v) +4)". (Note that u(v) > v(v), if v occurs in
Uv.)

Let up and ug be the representative vectors of the initial segments of U and UY
up to these points, so that p =q — Aug and p¥ = q — A(v + uy).

We will show that pY(v) > p(v). Given that the firing of v is legal at p, this
implies that the firing of v at q¥ is legal, too.

Evaluating p¥ and p at v we obtain

p(v) = a(v) — ug(v) (da(v) + su) + Y wo(w)w(u,v)
uFv
P (v) = q(v) — (v + u)(v) (da(v) + s0) + Y (v + uf) (w)w(u,v).
uFv
Since v is about to be fired for the i*" time in UY, we have
(v ud)(v) = V(o) +i — 1 = ug(v).
If u # v does occur in UV, suppose it has been fired j times. Then (v + uy)(u) =
v(u) + 7. If j =0, then
ug(u) < v(u) = (v+uy)(uw).

avalanche
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This follows, because if zy(u) were greater than v(u), then u would have been already
fired in UV, too. If j > 0, then

uy(u) =v(u) +75 = (v+uy)(u).
Finally, if v does not occur in UV, then
(v+uy)(u) =v(u) > u(u) > ug(u).

Hence (v + uy)(u) > up(u) for all vertices u, and v is a vertex which can be fired.
U

LEMMA 2.6. For any unstable configuration q, all avalanches starting at q ter-
minate at the same stable configuration and have the same length.

ProOF. Let U and V be avalanches starting at q with representative vectors u
and v. Then, by the preceding lemma, (V,UV) is also a legal sequence for q. We
are given that the sequence V transforms q into a stable configuration, so that no
vertex can be fired after V. Therefore, UY must be empty, which can only be the
case if v(v) > u(v), for all vertices v € V(G). Similarly, V" must be empty, too,
and therefore u(v) > v(v) for v € V(G). We conclude, that the sequences U and
V' have the same representative vectors and thus transform q into the same stable
configuration and have the same length. O

Hence, given a configuration q, we can define an operator 2, which transforms
q into the unique stable configuration reached after an avalanche. Furthermore, for

any load vector 1 we define a loading operator £ : RX(G) = 8(G),Lth=h+1
LEMMA 2.7. Ewvery pair of operators 2L o £ and 24 o £ commutes:
Ao LioAo Ly =Ao L4,
where 1 and k are arbitrary load vectors.

Proor. We only need to show that Ao £, 02 = A o £, or, more explicitly
AR™Aq +1) =A(q + 1) for any configuration q.

Let u be an avalanche starting at q and let «’ be an avalanche starting at 2 q+1.
Then (u,u’) is an avalanche starting at q+ 1, by the preceding lemma leading to the
same configuration as v’ starting at 2q + 1. O

DEFINITION 2.8. We now additionally require that the game is properly loaded,
that is, when 1 is the load vector of the game, from every vertex v with [, = 0, there
should be a path to a loaded vertex u, that is a vertex u with [,, > 0.

We call a configuration recurrent, if it is stable and can be reached after arbitrary
long time intervals, i.e., after arbitrary many applications of 2 o £;. Formally, we
define the set of recurrent configurations R(G) as

R(G) = (2o u (R]'Y),
teN

(@)

where 1 is the load vector and RX is the set of all configurations of the game.

properly loaded

recurrent
configuration



2. CHIP-FIRING GAMES ON GRAPHS 25

THEOREM 2.9. For a weakly dissipative, properly loaded game, the set R(G) of

recurrent configurations does not depend on the loading vector 1 and has volume
det A.

PRrROOF. We call two configurations q and q' equivalent, when their difference
is in the lattice generated by integer combinations of the columns of the transition
matrix A:

a~dq e q-—q =A)\

where the components of A are integers.

A set of configurations that contains for every configuration q exactly one con-
figuration equivalent to q is called a fundamental domain. The determinant of
the transition matrix A expresses the volume of the parallelepiped spanned by the
columns of the matrix, i.e. the volume of

{i)\zAz : >\i S (0, 1)},

i=1
where A; is the i*" column of A. This is precisely the volume of configurations in
a fundamental domain. We will show, that the set of recurrent configurations is a

fundamental domain.
The rule (+) for firings implies, that 20 q is equivalent to q for every configura-

tion q € RX(G). Furthermore, by definition of 2, 2 q belongs to the set of stable
configurations 8(G). Hence, §(G) contains a fundamental domain. As this property
is translation-invariant, £,8(G) also contains a fundamental domain. Clearly, so
does A o £;8.

Next we show, that any two equivalent recurrent configurations q and q' are
identical, if the load vector 1 satisfies

1, > A,, for all v € V(G).

Let h' be a stable configuration so that @' = 2o £;h’. Because £, h’ and q are
equivalent configurations, there is a vector A with £,h’ —q = A\, where all compo-
nents of A\ are integers. Furthermore, by the condition above we have £/ h! > q,.
Thus, Lemma 2.2 implies that there is a vector u with £ h' — q = Apu, where all
components of p are non-negative. Because, again by Lemma 2.2, A is nonsingular,
A and g must be identical, so the components of A are non-negative integers.

Now we choose t so large, that there is a legal sequence with representative
vector A starting at

H:£t|h+A>\:£t1h+£1h’—q,

where 2 o £,1h = q. As all components of 1 are positive, this can be done. Then
there exists an avalanche starting at h passing through £;;h. Thus we obtain
Ah = Ao £1h = q. Furthermore, an avalanche from £;;h to q started at h
terminates at £1h’. We obtain 2h = ¢/, and therefore, by the Abelian property
proved in Lemma 2.6, q = q'.

This proves, that the set of recurrent configurations is a fundamental domain,

if the load vector satisfies 1, > A, ,, for all vertices v. it remains to show that the
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set of recurrent configurations is independent of the load vector, provided that the
game is properly loaded.

Let 1 and 1’ be proper load vectors. The proper loading condition guarantees
that, for any ¢t € N, there is a t' € N so that there exists a legal sequence starting at
t' I passing through a configuration 1 with components greater than ¢ 1. Then, for
every configuration h, we have

Ao Li1(8) DAoLy (Ao Ly, ((8))

The last equation follows from Lemma 2.7. Furthermore, we have

Ao £h = A1+ h)
=A(¢'l + h)
= QIOSt/ 1/1’1.

Therefore, Ao L;1(8) 2 AoLy y(8). This implies, that [),oy AoLs1 2 ey Ao Ly, for
any two load vectors 1 and I'. We conclude, that the set of recurrent configurations
R(G) = Nen A 0 £41 cannot depend on the load vector 1. O

The following corollary reveals the connection of the recurrent configurations
with the number of spanning trees of G.

COROLLARY 2.10. Let G be a (di)graph with positive edge weights and let r be
one of its vertices. Then the volume of all recurrent configurations of a weakly
dissipative, properly loaded game with s, = 1 and s, = 0 for v # r is the same as
the number of spanning trees of G rooted at r.

PrROOF. By the preceding theorem, the volume of recurrent configurations of
the game is det A. Adding all rows of A to the row corresponding to r, we obtain
a matrix M with (M), , = 1 and (M),; = 0 for ¢ # r. Hence det A = det C, c.
By the Matrix-Tree-Theorem, see Chapter 5, Section 1 on page 53, this determinant
evaluates to the number of spanning trees of G rooted at r. O

Now consider the vector A~™'1. If there is a ¢ € Z and a vector n with integer
components, so that t A~'1 = n, then 1 = An. This implies that every sequence
of load and avalanche operators starting at any given configuration is periodic with
a period ¢, and vertex v fires n, times during a period.

This is the case for graphs and Eulerian digraphs G with positive edge weights,
when the dissipation is defined as in the corollary above and the load at each vertex
is equal to its dissipation: Then we have A=™'1 = (1,1,...,1)!. Note that in this
case every vertex fires exactly once during a period. This fact enables us to find a
bijection between recurrent configurations and the spanning trees of a graph.

THEOREM 2.11. Let G be a graph or Eulerian digraph with positive edge weights.
Given an arbitrary ordering of the edges of G, let < be the lexicographic ordering of
all paths from some vertex to a vertex r. Furthermore, let the load and the dissipation
at v be equal to one and at all other vertices equal to zero. Then the following two
constructions map every spanning in-tree T € T, (G) with weight w(T) onto a set of
recurrent configurations of G with volume w(T') and vice versa:



2. CHIP-FIRING GAMES ON GRAPHS 27

© Let q be a recurrent configuration of G. We construct an avalanche v =
(v1,v2,...,vp) starting at £,q as follows: Let v1(q) = r.

We say that a vertex u is primed by the firing of a vertex in the avalanche
v, if u has been stable before the firing, but is unstable afterwards.

Clearly, any unstable vertex must have been primed by some other vertex,
which in turn must itself have been primed, and so on. Because G is a graph
or Eulerian digraph, in every legal sequence each vertex is fired at most once
and hence is primed at most once.

It follows that there is a unique path P, = (u = uy,ug,...,u; = r) from
every unstable vertex u to the root r, so that u; has been primed by u;, for
i€ {1,2,...,k—1}. Let vxy1(q) be the vertex which is unstable after the
firings of v1(q), v2(q), ..., vx(q) and whose path P, is the first in the given
lexicographic order.

Let T} = r and T4 be the union of T} and the vertices which have been
primed by vg(q), together with the edges joining these vertices to vx(q). Then
T(q) = T, is a spanning in-tree of G rooted at r. Equivalently, T'(q) contains
the edges of G so that one end primes the other.

© Let T be a spanning in-tree of G, rooted at r. For any vertex v # r of G, let
v" be the vertex succeeding v on the path from v to r in T.

For an arbitrary vector A with A, € [0,1), we define the configuration

q(T, A) by

(T, \)) = d:G(v) = 2wz W, u) + Agw(v,0')  for v 75'7“

di(v) + Ay otherwise,
where u <7 v/, if the unique path in T from u to r comes before the unique
path from v’ to r in the given lexicographic order, and v <7 v' if u = v’ or
u <7 v

PrROOF. We have to show that each of the configurations defined in the second
construction is recurrent and that the two constructions are inverse to each other.
Suppose that a spanning in-tree T' is given. Let q = q(7,\) be a configuration
defined by the second construction. We inductively show that the first construction
can be applied to q and the tree produced is the same as T'.

We make the induction hypothesis that T} is a subtree of 7', and the sequence
(vl(q), v2(q), . - - ,vk(q)) produced by the first construction is an initial segment of
the order <p. Clearly, this holds for k£ = 1.

Let v be a vertex primed by vi(q). We show that vx(q) = v, hence vi(q) is
adjacent to v in T and thus T is also a subtree of T":

Because v has been primed by wvg(q), and v1(q),v2(q),...,vx(q) is an initial
segment of the order <7, we have

0<qy+ Z w(v,u) — diz(v) < w(v,ve(q)).

u=rvE(q)
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By the definition of q we obtain

0< Z w(v,u) — Z w(v,u) + Ayw(v,v") < w(v,vr(q)).

u=rvg(q) u=v’

It follows from the left inequality that vg(q) =<7 v', and from the right inequality
that v' <7 vg(q). This implies that v(q) = v', which is what we wanted to show.

To complete the induction step, we have to show that if v is the next vertex
after vi(q) in the order <7, we have v = vi11(q).

All vertices preceding v in <7 occur in {vi(q),v2(q),...,vx(q)}. Because of
v = vg(q) and by the definition of q, v is unstable after the firing of the sequence
(vi(Q),v2(q), ..., vk(q)) and is thus in Ty41. We have already shown that Tj; is a
subtree of T', so v is also next after vx(q) in the order <7, , and therefore, by the
first construction, vgy1(q) = v.

This also shows, that q is recurrent, because the sequence

(vi(a),v2(q), - -, vp(q))

is legal for £1q and every vertex is fired exactly once.

Finally, let q by a recurrent configuration and let 7' = T'(q) be the spanning
in-tree produced be the first construction. It remains to show that q is in the set of
configurations defined by the second construction, given 7.

We want to show that, if v’ primes v,

Aw(v,v') = qp — dg(v) + Z w(v, u)

u=<7pv’

is in [0,w(v,v")). Because of

0<q,—ds(v) + Z w(v,u) < w(v,v'),

u=7v

this is indeed the case. Ol

Note that the preceding correspondence maps the recurrent configurations of a graph
onto its in-trees, not its arborescences, although the volume of recurrent configu-
rations equals the number of arborescences of the graph. For (weighted) Eulerian
digraphs the number of in-trees and arborescences coincide. For general digraphs,
however, the number of in-trees is different from the number of arborescences.

In Section 3 we give a bijection between the spanning in-trees and arborescences
of an unweighted Eulerian digraph, but we do not know a bijective proof for weighted
Eulerian graphs.

3. Eulerian tours

In this section we will show that in an unweighted Eulerian digraph the number
of Eulerian tours is closely related to its number of spanning trees.

BEST-THEOREM (de Bruijn, van Ehrenfest, Smith and Tutte).  Let G be an
Eulerian digraph, that is, for each vertex of G the in- and outdegree coincide. Then



3. EULERIAN TOURS 29

the number of arborescences does not depend on the root chosen and can be related
to the number of directed Eulerian tours as follows:

e@) = [[ (da)-1)-¢a).

veV(Q)

The following two maps define a correspondence between FEulerian tours with final
arc e leading to a vertex r and arborescences of G rooted at r:

© Let E be an Eulerian tour with final arc e leading to a vertex r. Construct
the corresponding arborescence as follows:
Let T be the graph consisting only of the vertex r.
WHILE not all vertices of G are in T'
Select the first arc in £ which leads to a vertex which is not yet in 7T'.
Add this arc and the vertex it is leading to, to T.
END WHILE.
@ Let T be an arborescence rooted at r. The following construction yields one of
the HvEV(G) (d%,(v) —1)! corresponding Eulerian tours with final arc e, leading
to r:
Let E be the tour (v,e,r), where v is the vertex e is incident from. Set
T =T Ue.
REPEAT
Let v be the initial vertex of E.
If there is an arc in G incident to v, which is not in 7" and not yet in
E. then add the vertex v’ it is incident from, and the arc itself, to the
beginning of E.
Otherwise, select the arc in 7" which is incident to v and add the vertex
v' it is incident from, and the arc itself, to the beginning of E.
UNTIL all arcs incident to v’ are in E.

PRrROOF. It is clear that the first construction produces an arborescence of G.
We have to show that the second counstruction always produces an Eulerian tour of
G:

Let E be the walk constructed by the algorithm given an arborescence 7T'. It is
clear, that F is a closed walk and all arcs incident from and to r are in . Let v be
any vertex of G. In T there is a walk (r,e;,v1,e9,...,0,-1,€p,v) leading from 7 to
v. We prove inductively, that all arcs incident to and from v are in E.

The arc e; is in E. If, for 0 < ¢ < n, the arc e¢; is in F, then all arcs incident
to v; must be in E, because e; € E(T) is the last arc incident to v; added to E.
Therefore, all arcs incident from v; are also in E. This applies in particular to e;4.
Hence, as v was arbitrary, all arcs of G are in F, that is, F is Eulerian.

Finally, let 7' be an arborescence of G and let E be one of the [ ], .y« (d% (v)—1)!
Eulerian tours produced by the second construction given 7. It remains to show
that the arborescence produced by the first construction given E is equal to 7.

Clearly, for each vertex v € V(G) we can fix an arbitrary order in which the arcs
incident to v shall be traversed, provided that the arc contained in 7' is the first arc
in this order. On the other hand, constructing the arborescence given an Eulerian

there are

d¢; (v) — 1 arcs
leading to v
which are not in
TI
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tour F, we also select the arc which leads us to a particular vertex the first time in
E. All the other arcs leading to this vertex are ignored. U

Note, that we also obtained the important result, that in an Eulerian digraph
the number of spanning trees does not depend on the root chosen. This is also true
for weighted Eulerian digraphs, i.e., graphs where the sum of the weights of the
arcs incident to a vertex is the same as the sum of the weights of the arcs incident
from this vertex. This can be shown with the Matrix-Tree-Theorem, see Chapter 5,
Section 1, Corollary 1.1.

Furthermore, it is clear that similar constructions define a correspondence be-
tween Eulerian tours with first arc e starting from a vertex r and spanning in-trees
of G rooted at r. This enables us to construct a bijection between the arborescences
and spanning in-trees of G. Again, using the Matrix-Tree-Theorem it can be shown
that also in weighted Eulerian digraphs the number of arborescences and the number
of spanning in-trees is the same.

4. Forests

As we can count the spanning trees of a graph, we can also try to determine its
number of spanning forests. It can be a very difficult task to count the spanning
forests of a graph with arbitrary roots. In Chapter 4, Section 3 we will solve this
problem for some very simple families of graphs.

However, given a graph G and a subset R of the vertices of G it is very easy to
obtain a relationship between the number of spanning forests of G with roots in R
and the spanning trees of a related graph:

THEOREM 4.1. Let G be a (weighted) (di)graph and let R be a subset of the
vertices of G. Let G+ge be the contraction of G to the vertices in V(G)\ R defined in
Definition 2.13, denoting the new vertex by r. Then there is a (weight preserving)
bijection between the spanning forests of G with roots in R and the spanning trees
of G+ge, rooted at r.

ProoF. This is obvious. O

REMARK. Of course, sometimes it is still easier to count the spanning forests of
a graph directly, rather than making this detour, see for example Corollary 3.2 in
Chapter 4. But in many cases we can derive the corresponding formula for spanning
forests easily from the expression for spanning trees. A particularly nice example is
the encoding given in Theorem 3.3 in the same chapter and the following theorems
and propositions.

5. Matchings

Apart from spanning trees, the most important type of subgraph of graphs are
perfect matchings:

DEFINITION 5.1. A perfect matching M of a graph G is a one-regular spanning
subgraph of G.

perfect
matching
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REMARK. If a graph has a perfect matching, its number of vertices must be
even.

In 1974, Temperley [38] found a bijection between the spanning trees of the
m x n grid and perfect matchings of the (2m + 1) x (2n + 1) grid with a corner
removed. Kenyon, Propp, and Wilson [23] generalized this bijection to spanning
trees of weighted planar (di)graphs.

Let G be a weighted planar digraph. We define a weighted planar graph G’ as
follows: Let the vertex set of G’ be V(G)U&(G)UF(G). We will denote the vertices in
G' by v, ¢ and f’, depending on the corresponding structure in G. For an example,
see Figure 1. Note, that we draw the vertex corresponding to the unbounded face
of G as remarked in Section 1.

We connect two vertices of G' by an edge if their corresponding structures in G
are either an edge and its head, or an edge and one of the faces it bounds.

Let the weight of an edge in G’ between two vertices v’ and ¢, corresponding to
a vertex v and an edge e of @, be the weight of the edge e in G. The weight of an
edge joining ¢’ and f’, corresponding to an edge e and a face f of é, is always 1.

THEOREM 5.2. Let G be a planar digraph and let G be its underlying graph.
Construct G' as above. Let ¥ be a vertex and f a face of G. If ' is a vertex on
the border of f’ then the followmg correspondence is a weight-preserving bzyectwn
between the spanning trees ofG rooted at v and the perfect matchings of G'\ {v', f }:

& Let T be a spanning tree of G rooted at @, and let T be the underlying
spanning tree in G. Let T™ be the spanning tree of G* corresponding to the
edges not in T'. Let T* be the digraph obtained by orienting the edges of T™*
away from f . Then we can construct a perfect matching M of G’ as follows:
For each vertex v € V(é), pair v’ with the unique vertex €/, e € 8(@), such
that v is the head of e in T, and for each face f € F(G), pair f’ with the
unique €', such that f is the head of e in T*.

@ Let M be a perfect matching of G’. Then the edge set of the corresponding
spanning tree of G consists of the edges e, such that ¢’ is paired with a vertex
of G’ corresponding to a vertex of G.

REMARK. We can extend this theorem to undirected weighted graphs by think-
ing of each undirected edge as two arcs, one in each direction. (See also Definition 1.1
in Chapter 2.)

PROOF. As we can recover the spanning tree from the matching it is mapped
to, the mapping is injective. Let T be the spanning subgraph of G formed by the
set of edges e, such that €’ is paired with a vertex of G’ corresponding to a vertex
of G. We have to show, that T indeed is a spanning tree of G , rooted at 0. First we
show that 7', the underlying graph of T, is acyclic:

Suppose T contained a cycle. Because G and G’ are planar, by the Jordan-
Curve-Theorem the cycle divides the plane (and hence G and G') into two regions,
one of which contains both v and f and the other of which contains neither. We
claim that each part contains an odd number of vertices of G':

see
Definition 1.1

see the proof of
Theorem 1.2 in
Chapter 2
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Modify G by replacing either of the two regions by a single face. By Euler’s
formula, the number of vertices, edges and faces in the resulting graph must be even.
Since there are an even number of these elements on the cycle (as many vertices as
edges) and an odd number in the modified region (1 face), the unmodified region
must contain an odd number of elements, corresponding to the vertices of G, as
well.

Since the edges of the cycle disconnect G’ into parts lying in the two regions,
the matching must pair elements within one region. This is impossible, since each
region has been shown to contain an odd number of vertices of G'.

As T has ‘V(é)‘ — 1 edges, it remains to show that all edges are directed away

from ©. This is the case, as two edges in T pointing towards the same vertex are
adjacent in G', and therefore cannot be contained in one matching. O

REMARK. Ciucu [14] used this correspondence in conjunction with a theorem
which expresses the number of perfect matchings in a graph in terms of the number
of perfect matchings of a related graph to show that the even Aztec rectangle has
exactly four times as many spanning trees as the corresponding odd Aztec rectangle.



CHAPTER 4

Combinatorial Proofs

In this chapter we will be concerned with some combinatorial methods that
enable us to determine the number of spanning trees of a graph. Although these
methods apply only to rather restricted classes of graphs, sometimes strikingly simple
calculations reveal the number of spanning trees of seemingly complex graphs.

1. Reduction Procedures

It is obvious that any spanning tree of a graph either does or does not contain a
given edge e. Furthermore, the number of spanning trees which contain a specified
edge e is the same as the total number of spanning trees of the graph with e and its
endnodes contracted to a single node. Hence, as already Feussner [16, 17] noted,

t(G) = t(G|,.) + t(Gee).

More generally, let £ C £(G) be a set of edges of a connected graph G. Suppose
that the subgraphs G|, and G|. have exactly two vertices in common. Then

t(G) = t(Glge) - t(G-r) + t(Cp) - €(G ).
For example, take E to be a set of k parallel edges, then

Similarly, if £ is the edge set of k parallel paths with lengths [y, lo, ..., [; joining
two vertices, then

k
t(G) =1yl - t(G| ) +le“‘[i“‘lk (G pe).
i=1
Subdividing an edge e of G, denoting the resulting graph with G, we get
t(Gs) = t(Gl.e) +(G).

Using these relations we get recursions for the number of spanning trees for some
families of graphs:

34
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ExAMPLE 1.1. The ladder is defined as L, = Ko & P,. For n > 3 we have

Furthermore, we have ¢(L1) = 1 and ¢(Ly) = 4. By standard methods for solving
linear recursions we obtain

t(L,) = % [(2+v3)" = (2-v3)'].

ExAMPLE 1.2. The fan is defined as F,, = K sy P,. For n > 3 we have

=3t(F,-1) — t(F,—2).
Clearly, t(Fy) = 1 and ¢(F3) = 3. Solving this linear recursion we obtain

(5 (55))

1
V5

t(Fn) =
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ExampLE 1.3. The wheel is defined by W), = K; v C,. For n > 4 we have

e &
G G
—t(F,) +t(} )+l )
| QH( <>
= ) + (W 1) +8( % o e)
é )l <)

(Wn 1)+2t —2t n— 1)+t
(Wn—1)+t(F) ( )

=t(F,) + t(W,— )—l—t( |

—t(:

t
t

Defining C5 as two parallel edges, this recursion holds also for n = 2. Therefore,
with ¢(Ws3) = 3 and ¢(W,) = 16, we have

t(W,) = <3+2‘/5> + <3_2‘/5> —2.

For weighted graphs G there is another reduction process, which consists of
replacing a star S, C G by a complete graph K, with appropriately chosen weights,
thus reducing G by one vertex.

We number the vertices of the star except the one in the middle clockwise from
1 to n, and label the vertex in the middle with 0. Suppose that the edge connecting
vertex i with the vertex in the center of the star has weight a;, 7 € {1,2,...,n}. Let
§ =" a; and let oy ; = 452

Let G’ be the graph obtained from G by replacing the star by the complete
graph, where the edge connecting vertices ¢ and j has weight «; ;. Then

t(Q) = 0t(G").



1. REDUCTION PROCEDURES

i,j

37

Unfortunately, we do not have a combinatorial proof for this, so we have to use the
Matrix-Tree-Theorem proved in Chapter 5, Section 1 on page 53. It expresses the
number of spanning trees of a graph as the determinant of any principal minor of

its Laplacian matrix.

The Laplacian matrix of G can be written as

0 —aq —a9 —an 0

—a1 a1+ di 0 0

—a9 0 as + do A
: : - 0

Ce = —an, 0 0 a,+d,

0
: Al B
0

where d; = dg(i) — a;. By the Matrix-Tree-Theorem, ¢(G) equals the determinant

of any principal minor of Cg:

£(G) = det(Cg)ye.

For our purposes we demand r > n. We can then transform C¢ into the Laplacian
matrix of G’ by adding % times the first row to each row i, i € {1,2,...,n}. The
result of these operations is the matrix

) —dal
0 a1(1 - (%1) + d1
0 01172
0 al,n

—ay
Q12

Qp—1.n

—an,

(e37)

At
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It remains to check that a;(1 — %) + d; is indeed the degree of vertex 4 in G':

n

n
a;a; a;
> i tdi= Zéj-i-di:ai(l—f)—i‘di-
i1 i=1
J#i J#

The inverse operation is not quite as nice to describe. Furthermore, «;; =
% implies that the weights of the complete subgraph have to obey the following
boundary conditions: OZ—: is constant for all .

If these conditions are satisfied, it can be checked that the following weights of
the star are appropriate:

n
Q120013
a) = —= +§ Q)
23

=1
I£1
and, for k £ 1

n

a3
ap = oy p(l + ——— Zal,l)-
@1,200,3 17—

I£1
The variable § then evaluates to
2

n
Q93 Q20013
§=—2" | Y oy —
120013 -1 a3

11

An interesting special case occurs when all weights before and after the trans-
formation are integers. In this case, G and G’ can be represented without weights
by replacing an edge with weight & by k parallel edges.

ExaMpPLE 1.4. A complete subgraph K, of a graph G — with all edge weights
«; ; equal to one — can be replaced by a star Sy, where each edge has weight a; = n.
This applies also for the complete graph itself. The number of spanning trees of the
corresponding star with all edge weights equal to n is n'. The variable § evaluates
to n?. Hence,

In fact, these transformations can be generalized to apply to digraphs.

REMARK. By summing up over all edges of a graph we obtain another nice
identity: Let T7, 715, ..., T} be the spanning trees of G. Then we have

q
D oxleieTy) =p-1
=1

t
> _x(ei €)= t(Grere)-
j=1
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Hence
Yo HGe) = H(Goee))
ecé(qQ) i=1
t
= Z Z x(e;i € T])
j=1i=1
t
=) (p-1)
7j=1
=(®-1)-tG)
And

2. Dividing Graphs

Although the method of restriction and contraction works well for families of
‘linear’ graphs, it is already difficult to count the spanning trees of the wheel and it is
not applicable for graphs like the square of the cycle. Following the method presented
below we can count spanning trees in some graphs with rotational symmetry like
the square of a circle C2, the Mobius ladder M,, or the cyclic ladder Ky & C,,.

First we embed the graph on a suitable surface. This can be the cylinder or the
Mobius strip.

Then we cut the surface along some Jordan path to obtain something homeo-
morphic to a rectangle. In the following we will identify a Jordan path with the set
of edges it crosses. Hence we consider two Jordan paths as different only if they
cross different sets of edges.

EXAMPLE 2.1. The following figure depicts the cyclic ladder Cs & K embedded
in a gray cylinder and a dotted Jordan path which cuts the cylinder:



2. DIVIDING GRAPHS 40

By deleting all the edges of the graph the Jordan path crosses we arrive at a
spanning subgraph. We now try to find a set P(G) of Jordan paths, so that the
concatenation of any two of them induces a cutset of the graph and every spanning
tree is contained in exactly one of the graphs G|p., where P is the set of edges
crossed by a particular Jordan path.

This is easy for planar graphs embedded in a cylinder, as Ky @ C,, or C3:
Consider the Jordan paths running from one to the other border of the cylinder.
Concatenating any two such Jordan paths we obtain a closed path which separates
the surface into two regions. As the paths are supposed to induce different cuts, there
must be at least one vertex in each of the regions. Hence, deleting the edges crossed
by any of the two paths, we obtain a disconnected graph. Thus, as a spanning tree
is connected, it cannot be induced by two different Jordan paths.

Given a spanning tree, it is always possible to find a Jordan path as described
above, that does not cross any edge of the tree, as a tree cannot contain a cycle.

For non-planar graphs embedded in a Mobius strip, like the Mobius ladder M,
or C3, .1, we may use the family of closed Jordan paths starting at an arbitrary fixed
point on the border of the Mobius strip and cutting it into something homeomorphic
to a rectangle. Again, two such paths induce a cutset of the graph, as the first path
cuts the Mobius strip into a rectangle and the second cuts the rectangle into two
regions.

Therefore, every Jordan path in P(G) corresponds to a set of spanning trees and
any two such sets are disjoint. Furthermore, every spanning tree is contained in
one of these sets. So all we have to do is to add up the number of spanning trees
corresponding to each Jordan path in P(G):

tG) = Y t(Glg)
PEP(G)

In the various ladders we deal with below, we will use the term ‘rungs’ for
the edges connecting the two paths or circles. The explicit formulas can easily be
obtained using the recursions of Section 1.

EXAMPLE 2.2. The cyclic ladder Ky @ C), can be embedded in a cylinder. Any
Jordan path crossing £ < n ‘rungs’ results in a ladder of length n — k£ with two



3. CODES 41

VAVAVAR

FIGURE 1. A strip graph

pending paths, one on each end. For any k > 0 there are 2n such paths, since there
are n edges to start with and two directions to go: clockwise or counterclockwise. For
k = 0, that is, for the Jordan path which crosses no ‘rungs’, there is no counterpart,
of course. Hence we have
n—1
(K2 ® Cn) =20 t(Lg) + nt(Ly)
k=1

5[ () -]

ExAMPLE 2.3. The Mobius ladder M, can be embedded in a Mobius strip.
Again, a Jordan path crossing £ < n ‘rungs’ and any two other edges results in
a ladder of length n — k with two pending paths, one on each end. For every pair of
edges which are not ‘rungs’ we have two different Jordan paths, except for the case,
where the two edges are exactly opposite of each other belonging to the same face of
M,,. Furthermore, there are 2n Jordan paths crossing all the ‘rungs’ and only one
other edge, inducing a path of length 2n — 1. Hence, we have

n—1
t(My,) =21 t(Lg) + nt(Ly) + 2n
k=1

[ vE)" (v ).

EXAMPLE 2.4. Fore even n, the square of the circle C? is a planar graph. Its
spanning trees can be counted exactly the same way as the spanning trees of Ko®C),,
except that the Jordan paths now induce strip graphs as in Figure 1. Note that these
strip graphs have the same dual as the fan. Hence

n—1
t(Ch) =20 t(Fy) + nt(Fy,) =nfy,
k=1
where f, is the n'" Fibonacci number.

For odd n, the square of the circle C2 must be embedded in the Mobius strip.
Proceeding similarly to the example of the Mobius ladder, we obtain the same ex-
pression as for even n.

3. Codes

In 1918, Priifer [34] constructed a correspondence between the trees of the com-
plete graph K, for p > 1, and words of p — 2 letters from a p-element set, showing
t(K,) = pP~2.
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With a minor change, Priifer’s algorithm can be used for encoding any spanning
forest of the complete graph:

THEOREM 3.1 (Priifer 1918). The following two maps define a correspondence
between labelled forests on p vertices with roots in R (p > |R|) and words of p — |R)|
letters from a p-element set, the last letter being an element of R.

& Let Fr be a forest on p vertices labelled with numbers from 1 to p with roots
in R. Produce the corresponding word as follows:
WHILE there is at least one edge in the forest
Write down the label of the vertex adjacent to the leaf with the smallest
label.
Remove this leaf and its incident edge.
END WHILE.
© Let w = (v1,v2,...,v,_|g) be a word with p — |R| letters, all in {1,2,...,p},
the last in R. Let V be a set containing the vertices labelled from 1 to p
which are not roots. Produce the corresponding tree as follows:
WHILE the word is not empty
Let u be the vertex with the smallest label in V' \ R which does not
appear in w, let v be the first letter of w.
Add (v,u) to the edge set. Drop the first letter of the word w and
remove u from the set V.
END WHILE.

REMARK. In Priifer’s original encoding for trees, the last edge would never be
removed as it must always be incident to the root. Hence his encoding produces
codes of length p — 2. Using the variant of his encoding described above, though,
the following corollary is obtained much easier:

COROLLARY 3.2. For a given set of roots R there are |R| - pP~IBI=1 spanning
forests of the complete graph K.

Clearly, Priifer’s encoding can be applied in just the same manner when we con-
sider spanning trees of any graph or digraph. In these cases some codes simply will
never be produced. When multiple edges are allowed, some codes will be produced
more often. It seems though, that it is not any easier to count those codes which
may be output of the procedure than to count the spanning trees of the graph in
some other way.

Knuth [26], later Kelmans [22] and finally Pak and Postnikov [33] generalized
Priifer’s encoding — although the constructions in the latter two papers were in-
correct, the idea was right — to deal with the generalized lexicographic product
G[Hi, Hs,...,Hp] of graphs G and H, for v € V(G).

Given a linear order on the vertices of G and Hy, Ha, ..., H,, in what follows
we will use the lexicographic order on the vertices of the lexicographic product
G [Hl, HQ, s ,Hp], id est:

u <vj:eu<voru=ovandi<j.

in a forest a leaf
is not a root
and has degree
one (outdegree
zero)

in digraphs, an
arc (v, u) starts
in v and

terminates in u
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The encoding we will present enables us to encode the spanning trees of any
(di)graph of the form G [Hy, Ho, ..., H,]. Anillustration will be given in Example 3.4
below.

THEOREM 3.3 (Knuth 1968, Kelmans 1989, Pak and Postnikov 1990).
The two maps below define a one to one correspondence between the spanning trees
of G[Hy, Ha, ..., Hp] with root rx (p > 1) and structures w as follows:

w = (T, (Fy)vev(a) (@o)vev)s (Wo)vev()), where

T is a tree in T, (G)

F, is a rooted forest of H,
w, 18 a word with d"T(v) letters in H,, and the last letter of w, belongs to the
component of F,. which contains the root
e w, is a word with ¢(F,) — 1 letters in Ng[

HI;HZ:"WHP} (HU)

& Let T be a spanning tree of G [Hy, Ho, ..., Hy] with root rz. Produce w as
follows:
WHILE there is at least one edge in the tree T'
Let ui be the leaf with the smallest label, vj the vertex incident to wz,
hence (vj,ui) € E(T).
If v = u then let (vj,ui) be a new edge of F,.
If v # u and wui is not the last vertex of H, remaining in T" then write
v 1o wy,.
Otherwise write vj to w, and let (v,u) be a new edge of F.
Remove this leaf and its incident edge.

END WHILE.
© Let w be a structure as described above. Let V be a set containing the
vertices of G [Hy, Hs, ..., H,] except of rz. Produce the corresponding tree

T as follows:
WHILE not all of the words in w are empty
Let ut be the vertex with the smallest label in V' which has outdegree
zero in F,, and does neither occur in w,, nor in w,. Remove ui from V.
If u; has a predecessor in F,, then let vj be this vertex and remove
(v, ui) from F,.
If u; does not have a predecessor in F, but w, # 0, then let vj be the
first letter in wy,.
Otherwise let vj be the first letter in w,, where v is the predecessor of
uwin F.
Remove this occurrence of vj and add (vj,ui) to the edge-set of T'.
END WHILE.

REMARK. Using Theorem 4.1 in Chapter 3 we can transform this theorem
into a theorem on spanning forests: Let G' and H;, H»,...,H, be graphs and R
be a subset of the set of vertices of G. Then the number of spanning forests
Fr(G[Hy, Hy,...,Hp]) — forests that have roots in J,cp Hy — is equal to the num-
ber of spanning trees in J,.(G'+ge [H1, Hy, ..., H, g, Hg]), where Hp is the single

wi might be a
root in F3,!
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vertex to which the vertices in R are contracted, and G’ has the same vertex set as
G but every edge in G between a vertex r € R and some other vertex not in R is
replaced by |V(H,)| edges, and every edge between two vertices r; and ry in R is
replaced by |V(H, )| [V(Hy,)| + |E(Hy, )| 4 [€(H, )| edges.

Applying Theorem 3.3 to G"ge[H1, Ha, . .., H,_|g|, Hg], we see that the spanning
forests of G'[Hy, Ha,. .., Hy| with roots in |, H;, where R C V(G) are mapped
onto structures w as follows (the details are left to the reader):

w = (F, (Fy)yevie)\r> (@o)vev(c) (Wo)vev(c)\ k), Where

F is a forest in FR(G),
F, is a rooted forest of H,,
* W, is a word with d%(v) letters in Hy,

o w, is a word with ¢(F,) — 1 letters in N, [t Ho, .. Hp](Hv)'
The maps between these structures and Fr(G [Hi, Ho,...,H,| are the same as
above, except that the root rz must be replaced with the set of roots |, . H-

Before we embark on the proof we give an example:

b

3
ExampLE 3.4. Consider the lexicographic product A [ é ec, o, |. (The
a
1 2 @

e e

encircled vertex ® denotes the root.) The following figure depicts the resulting graph
and one of its spanning trees.

3b 3a 3b 3a

le le

Applying the algorithm, we arrive at the following structure w:

wy : 3b la 3
wi : le, 1b Fy: b F:
w3 : le .
lc 1 2

PROOF OF THEOREM 3.3. We prove that the two maps are well defined and
inverses of each other.

© produces a set w as demanded:
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We prove this by induction on the number of vertices of G [Hi, Ha, ..., Hp):

Suppose the statement holds for any tree 7" of G'[H{, Hy, ..., H,] with a given
number of vertices. Let T be a tree of G [Hy, Ha, ..., Hp] with one more vertex. Let
ui be the leaf with the smallest label and vj the vertex incident to ui. Now there
are three possibilities:

v =u:

Removing ui and (vj,ui) gives a tree T of G [Hi,...,H, \ ui,...,H,]. By
induction, 7" is encoded by a structure w' of the type described above. We
have to show that w = w' with F replaced with F, = F, U (vj,ui) is an
encoding of T as demanded. This is the case, because F), is still a forest of
H, and ¢(F,) = c(F}).

e v # u, but there is another vertex besides ui in H,:
Removing ui and (v, ui) again yields a tree T”, just as above. Again T and @,
for v € V(G) remain unchanged, but now ¢(F,) = ¢(F),) +1 and w, = vj,w),.
Again the algorithm does the right thing.

e v # u, and us is the only vertex in H,:
In this case we get a tree 7" of (G \w) [Hy,...,H,,...,H,). Now @, = vj, o,
and &(T) = &(T') U (v, u), accordingly dei(v) = o (v) + 1. Hence, for v # r,
all conditions imposed on w are still satisfied. Now suppose v = r. We have
to show, that the last letter of w, belongs to the component of F, which
contains the root. If W] # () we are done, as the last letter of W/ belongs
to the component of F] which contains the root by induction. Otherwise

]

= (r) = 0 which means that H, = wi is the only subgraph connected to H,,
hence it must be connected to a component of F; which contains a root.

@ produces a tree in J,(G [Hi, Hy, ..., Hp)):

Let W be a multiset containing the letters of (wy,), and (w,),, and all letters wi
with df, (ui) # 0. Let W' be the set of distinct letters in W\ {rz}. We have to
show that there is always a vertex wi in V' \ W', unless W is empty:

At most |[W|— |W'| — 1 letters can be removed from W without decreasing the
size of W', as the root rz is removed last, which we will show later. Hence, as
|[W| < |V, there are at least |W'| + 1 letters remaining in V', whereas W' has not
changed.

It remains to show that the last letter removed is the root:

First we have to show that the last letter of a word w, can be removed only, if
for (v,u) € T all words W, and w, are already empty and F, consists of isolated
vertices only. In order to see this, suppose that w, contains only a single letter vy,
and, when (v,u) € T, ui is the vertex with the smallest label in V' \ {rz}. If w, still
contains a letter uz (which must be different from wi because ui ¢ W), not all of
the words w, can be empty or Fy still contains an edge: Either ui and uz belong
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to different components of Fy,, then w, contains at least one vertex. Or, ui and uzx
belong to the same component of Fj,.

Hence, before the last letter of the word w, can be removed, all words except
w, and all forests except F, must be empty. The word w, cannot contain letters of
H,, hence it must be empty, too. (Otherwise, supposing H, contained a letter uz,
not all of the words w,, would be empty, or F,, would still contain an edge.) Now we
can distinguish between two possible cases:

Suppose w, = ry, which is not the root. Then ry belongs — as we required — to
the component of F). that contains the root. But edges from this component can be
removed only after the removal of ry.

Now suppose that w, contains only the root and there is an edge in a component
Ty of F, which does not contain the root. But 7 should contain no edges anymore,
because all letters ry except those in Tp are in V' \ W', but none of the letters of H,
with u # r, because all the other words are already empty. This is a contradiction.

® and @ are inverse to each other:

We only have to check that each step of & is the inverse of the corresponding
step of @. This is trivial. O

This correspondence makes it possible to compute the number of spanning trees
and forests of G [Hy, Ha, ..., Hp):

THEOREM 3.5. For (di)graphs G and H,, where v € G, and an arbitrary vertex
r € G[Hy,Hy,...,Hy| we have

t,(G[Hy, Hy,...,Hpy))

\Ho|
(HZJ% (> m)) > I imt
veV(G ueV(Q) TGQ’T(G)’UEV Q)
(u,w)EE(Q)
For (di)graphs G and H,, where v € G, and a set of roots R = |,y V(Hy), where
U C V(G) we have
fR(G [Hlv H27 s 7Hp])
|Ho|
[I >rw)( Y m)™) > I s,
VEV(G)\R i=1 wEV(@) FeFn(G) vEV(G)

(u,0)EE(G)
where f;(F) denotes the number of forests in F with i roots.

PrOOF. We show the statement about the number of spanning trees first: Given
a set of rooted forests F, of H,, where v € V(G), there are

1S |ape

veEV(G)  ueV(G)
(u,w)EE(Q)
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sets of words w,, where v € V(G), given a tree F of G, rooted in r, there are
[T 0 a0
veV(G)\{r}
sets of words w,, where v € V(G). Each combination of those sets corresponds to a

tree of G [H1, Ho, ..., H,]. Hence

tT(G [HlaHQa s 7Hp])

-( X H o)) S T

Fy,e€F(Hy) veV(G ueV(QG) FeT.(G) veV(G)
(u,v)ES(G)

which is what we wanted to show. The statement about the number of spanning
forests follows by Theorem 4.1 in Chapter 3. See also the remark just after Theo-
rem 3.3. U

Using this awkward looking, but powerful theorem we can deal with quite a few
families of graphs. For multipartite graphs we can simplify the second factor of the
formula a little bit. For doing so we need a simple lemma:

LEMMA 3.6. The number of occurrences of a letter v in the Prifer code — even
in its generalized form as in Theorem 3.3 — of some forest F' equals dp(v) if v is a
root, dp(v) — 1 otherwise.

REMARK. We consider the elements of the set W as described in the proof of
Theorem 3.5 as elements of the generalized Priifer code.

ProOOF. Consider F as a directed forest with every edge directed away from the
corresponding root. Each time a successor of a vertex v is removed, the letter v is
added to the code. Now the result follows, as every vertex v in a forest F' has d%(v)
SUCCEeSSOrs. U

PROPOSITION 3.7. Let G be any bipartite graph with parts Gi1 and G2 and

hy  forve Gy
|Hv| =
ho for v € G.

Furthermore, let r be a vertex of G [Hy,Hs,...,H,]. Then we have

t.(G[Hy, Ha,. .., Hy))

=(II S () (o v))

vel; =1

( H Zfz )(hide(v))*™ ) R P2 P (@),

veEGy 1=1

where p1 = |V(G1)| and py = |V(G2)|.



3. CODES 48

FIGURE 2. The graph P6 [02, 03, 02, 03, 02, 03]

PROOF. Observe that for v € G| we have

D |Hul = hadg(v),
ueV(G)
(uw)EE(Q)
and similarly for v € G5. Hence, the first factor in the formula given by Theorem 3.5
can be split up into two factors, as above.
We denote the parts of any tree T' of G by T; and T. Then we can rewrite the
second factor in the formula given by Theorem 3.5 as follows:

ZHIHI = > I w™" I m™

TeT,(G) veV(@ TeT,(G) veEV(GL) vEV(G2)
Z hy 2veviay) 47, (v )h2Z”€V(G2)dT2()
TeT, (G)
-1 -1
> et
TeT, (G)

= h1p271h2p171 * tr(G),
which is what we wanted to show. O
ExaMPLE 3.8. As an example we will compute the number of spanning trees of

the graphs P, [0}, Op,, O, Opy, ... ]. An example is depicted in Figure 2. Both P,
and Py, are bipartite graphs, therefore we can use Proposition 3.7:

H(Psy [O1, O, Oty Oy - ])
l pehy
= (Z fi(ow(zm)@'—l) (Z fz'(01>mi‘1>
i=1 3
m p—1
-(Zfi(omxzz)“) (Zf@ )i 1) B,
=1

The number of rooted forests of O,, with i roots f;(O,,) is nonzero only for i = m,
in this case it is equal to 1. Therefore,

t(Pap [O1, Om, Op, O, ... ]) = 20Hm =20 Lpplo=tymp =L,
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FIGURE 3. The complete multipartite graph K321

Similarly, for Pa, 1[0, O, Op, Oy, .. .| we get

p—1 l
< £i(Oy) (2m)’ ) (Z fi(Ol)mi1>
i=1

( f~(om>(21>i-1) U
=1

—o(l+m=2)(p—1)+m—1,, lp—1+{jmp—1

t(P2p+1 [Ola Om7 Ol7 Om7
2

Ms IIM~ :

=2"" b t(Pyy, [O1, O, O1, Oy - . 1))

PROPOSITION 3.9. Let G be the complete multipartite graph Kp, n,, . n,- This
graph can be expressed as Ky, [Op,, On,, ... Op,], where O,, denotes the graph consist-

ing of n isolated vertices. Let Nu = 0ev(0,,) Hol and N =37 oy (Knymgrmp) |Hy|.
Then we have
t(G[Hy, Ha, ..., Hy p.])
|Hol '
( H Zfz Z |Hu|)z—1> . NP2, H (N—Nu)nu_l_
veV(Q) 1= ueV(G) ueV(Kp)

(u,w)EE(Q)

PROOF. Any spanning tree 7' of G corresponds by the bijection to a tree
T € T(K,), a set of words Wy, Ws, ..., Wy, each having d(v) letters in V(On, ),
and a set of words wy, wo, ..., w, with each word w, having n, — 1 letters in
Uuev@)uzo V(On,). By Priifer’s (original) encoding, finally, T corresponds to a
p — 2 letter word w. The forests F, consist of isolated vertices only.

Hence we can rewrite the second factor of the formula:
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> L

T'eT(G) veV(G)

#v in W1,W2,.. ,wp

SRR T

Tej’ (Kp) W1LW2,. “Wp veV(G
w17w27 ,wp

:< Z H |H |#v1nw1,wg, W )

TeT(K,) veEV(GQ)

w1 7w27 )wp

. ( Z H |Hv|#v in wl,wz,...,wp)

w1,Ww2,...,Wp UEV(G)

(Z Z H |Hv|#uinm)

TeT(K,) ueV(Kp) Wu vEV(On,)

(I > I )

ueV(Kp) Wu v€Uyr,V(Ony)

-(> 1(1 )( (z )|Hv|>#“i”)
o > my-?

weV(Kp) vE€EUg,V(Ony)

(> )"

UEV(Knl Y seney np) uEV(KP) veUk;éuV(Onk)
— NP2 H (N— Nu)nu 1
ueV(Kp)

EXAMPLE 3.10. The complete multipartite graph K, ,, . ,, has

t(Kn[OplvOm’" n n QHP p pl !

spanning trees, where p = 3" | p;.

Clearly, the major difficulty we encounter when using Theorem 3.5 lies in the

calculation of the numbers f;(H). Still, for some simple families of graphs it is
possible to obtain nice formulas:
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PROPOSITION 3.11. The number of rooted forests with i components of the path
P, is
n+i—1
i(Pp) = .
Proor 1.

i)=Y kikyek

ki,k2,....ki
byttt Ki=n
kj>1

O

PROOF 2. Draw n + ¢ — 1 dots and choose n — ¢ of them to be edges. The
2i — 1 dots which were not selected then alternately represent a root (i items) and
separation of two components (i — 1 items). Hence a rooted forest of P, with ¢
components can be represented by a selection of n —¢ in n 4+ ¢ — 1 items. ]

PROPOSITION 3.12. The number of rooted forests with © components of the circle

C, is
nin+i—1

PROOF. Suppose the vertices of the path are numbered from 0 to n — 1, so that
(i, 4+ 1) is an edge of P, for i € {0,1,...,n —2}. Similarly, let the vertices of the
circle C,, be numbered from 1 to n, so that (i,7 + 1 mod n) is an edge of C,, for
i€{0,1,...,n—1}

Let Fp be a rooted forest of the path P, with ¢ roots, and select a vertex u. We
can then construct a rooted forest F¢ of the circle C,, with one component selected
as follows: Let (i,+1 mod n) be an edge of F¢ if and only if (u+i mod n,u+i+1
mod n) is an edge of Fp. Finally, select the component of F which contains vertex
n—u.

Conversely, let F be a rooted forest of the circle C,, with 7 roots, and select
one component. Let v be the smallest vertex in this component. Let (i,i+ 1) be an
edge of Fp if and only if (v +¢ mod n,v+i+1 mod n) is an edge of F. Finally,
select vertex n — v in Fp. O

PROPOSITION 3.13. The number of rooted forest with © components of the star
S, 18

s =m-i+a(," )
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PROOF. Select 7 — 1 vertices from {1,2,...,n} which shall be isolated vertices.
The other n—i42 vertices give the i*" component, in which a root has to be selected.
O

PROPOSITION 3.14. The number of rooted forests with © components of the com-

plete graph K, is
. (n—1
filfn) =" l(i— 1>'

ProoF. This is Corollary 3.2:

O

ExaMPLE 3.15. The number of spanning trees of the fan F,, can be calculated

as follows:
n

t(Ky [Ky, Po]) = Zfi(Pn)

Replacing ¢ with n — ¢ we get

P 2n —1— 21
= <2n—1—i>
4 i

1=0
:onfla

where f,, is the n® Fibonacci number.

ExAMPLE 3.16. The wheel W,, has

(K2 Kl, n] Zfz

n+1— .
= Z ( ) spanning trees.
2t —1



CHAPTER 5

Algebraic Proofs

This chapter covers the most powerful methods for determining the number of
spanning trees. The famous Matrix-Tree-Theorem and the theory of graph spectra
enables us to obtain very general theorems.

1. The Matrix-Tree-Theorem

The following theorem is probably the most important theorem when count-
ing spanning trees. Among the first who proved it were Kirchhoff [24] in 1847,
Sylvester [37] in 1855 and Borchardt [7] in 1860.

MATRIX-TREE-THEOREM. Given a (weighted) (di)graph G, its number of span-
ning forests can be computed by the formula

[r(G) = det(Cpe).
Here C denotes the Kirchhoff matriz or Laplacian of G and Cpge is the principal

minor of C that we obtain by deleting the rows and columns indexed by R.

ProoF. Consider G as a weighted complete digraph K, so that for any pair of
vertices u and v there is exactly one arc (u,v) from u to v which has weight a,, ,.
(See Definition 1.3)

By the definition of the determinant we have

det(Cpe) = Z sgn m H Cre(v),0-

™ permutation veV(G)\R
of the vertices in V(K,)\R

Substituting 5uyudi(v) — Gy, for ¢, , we arrive at

det(Cge) ngnﬂ H Zauv H _aw(v),v)

i (v)#v
= Z sgn H Af(v),v H (_aw(v),v)a
(m,f) v (v)=v v (v)#v
where f is any function from the set of fixed points of 7 into V(K}).
It is well known that sgn m = (—1)P~|El+#(cyclesin ) fyrthermore we have
#(m(v) # v) = p — |R| — #(trivial cycles in 7), hence
det(CRc) _ Z (_1)#(nontrivial cycles in ) H af() 0 H () 0-
(m,f) v (v)=v v (v)#v
Now, (m, f) defines a spanning subdigraph H of K, containing arcs from n(v) to v
for m(v) # v and from f(v) to v otherwise, for any v € V(K,) \ R.

53
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Because either f or m, but not both, apply to a vertex v € H we have

g (v) = 1 forveV(K,) \R
H 0 otherwise.

Hence any circuit in H must be a cycle and all cycles in H are disjoint. Furthermore,
any cycle in H must either belong completely to 7 or to f. Thus we can define the
following involution on the set of all pairs (m, f):

If there is at least one cycle in (m, f), take the cycle containing the smallest
vertex and put it to 7 if it belonged to f, and vice versa.

Clearly, this involution preserves weight but alternates sign, hence all terms
in the sum which contain cycles cancel. Therefore only terms with © = identity
actually count. In all the other terms, f contains no cycles, consists of p — | R| arcs,
and exactly the vertices in R have indegree zero, which implies that it must be a
forest with roots in R. This proves the theorem. ]

REMARK. We remarked after Proposition 1.6 in Chapter 2, Section 1, that
in [13] a Laplacian matrix for vertex-weighted graphs is defined. The principal
minor obtained from this matrix by deleting the row and column corresponding to
vertex r counts the vertex-weighted spanning trees rooted at r of the graph, where
the weight of a tree 1" is

w(T) = H w(u)w(u,v).
(u,0)€E(T)

The following important corollary for Eulerian digraphs is easily deduced from
the Matrix-Tree-Theorem. Note that we proved a special case already in Chapter 3,
Section 3.

COROLLARY 1.1. In Eulerian digraphs, the number of spanning trees does not
depend on the root chosen.

PrOOF. Consider the Laplacian matrix of an Eulerian digraph G on p vertices.
We have to show that there are as many spanning trees rooted at vertex 1, as there
are spanning trees rooted at vertex 2. By the Matrix-Tree-Theorem we have

doh—iG2y  —azy ... —ag
_a3,2 ZP: a3,
£1(G) = det , R
_ap72 25:1 ap)’u

Adding all columns but the first to the first column we obtain

a2,1 —a2;3 . —az2p

p
as,1 —1 03,
t1(G) =det | 2ov=1 B

P
a'p71 E’U:l ap,’u
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Finally, we add all rows but the first to the first row. Because G is Eulerian we have
S auy =.0_, ayy. Therefore, we obtain

dh—i01y a1 aip

a3,1 zp: a3,
£1(G) = det R

Gp,1 v—10p,v

D=1 Gl a3 —a1p
—az1 D y—1 03,

= det , e = t5(G)

_apal 2521 afp,’u

O

There is an alternative approach to the Matrix-Tree-Theorem — relying on the
cycle and cocycle spaces of a graph — which shall lead us towards a more general
result for weighted graphs. (For more details on these matters see [3]).

Recall that the Kirchhoff matrix C of an undirected weighted graph G without
loops can be expressed as BXB!, where B is the incidence matrix of G and X is its
weight matrix. Thus, we have

t(G) = det(BXB!),.,

where r is an arbitrary vertex of G. In the following we will show, that this equation
holds for any matrix B, whose rows form an integral basis of the lattice of integer
cocycles of an arbitrary orientation of G. We will first give the necessary definitions:

DEFINITION 1.2. Let G be a graph and let G be an arbitrary orientation of
G. Consider the linear space C'(G;R) of real valued functions on the edges of
G. The standard inner product of two elements z and y of Gl(é; R) is (z,y) =
Eeeg(G) z(e)y(e).

Let E be a subgraph of G and let E be an orientation of E. Then we can
represent F as an element d; of C(G;R) as follows:

+1 if the orientation of e is the same in Easin G

(5E-:(€) = —1
0 if e is not an element of £.

if the orientation of e is different in E and in G

We will call two edge sets Fy and Fs linearly independent, if the corresponding
elements 6 and ¢ are linearly independent.

Recall that a cycle is a closed path, i.e., a walk with all vertices distinct, and
contains at least one edge. A cocycle is a minimal cutset, i.e., a minimal set of edges
of G, whose removal from G increases the number of components of G.

For a cycle C of G let C be an orientation of C , so that all vertices have indegree
and outdegree equal to 1. Then the cycle space C of a digraph é, is the linear
subspace of (‘31(@ ;R) generated by the functions J5, where C'is a cycle of G.

Similarly, let C* be a cocycle of G and let V] and V5 be the vertex sets the edges
of C* are incident to. Let C* be the orientation of C*, so that all edges of C* have

cycle space

cocycle space
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their tail in Vi and their head in V5. The cocycle space C* of a digraph é, is the

linear subspace of (‘31(@ ; R) generated by the functions ., where C* is a cocycle of
G.

Note, that the rows of the incidence matrix of a graph are equal to +dz, where
v* is the cocycle defined by all edges incident to G.

Clearly, for any two orientations of a graph, the corresponding cycle and cocycle
spaces are isomorphic. Hence, we can informally speak of the cycle space of a graph
G, instead of the cycle space of an orientation of G.

The following lemma reveals the connection between the cycle and the cocycle
spaces of a graph and its incidence matrix:

LEMMA 1.3. Let B be the incidence matriz of an arbitrary orientation G of a
graph G. Then the cycle space C is the kernel of B, and the cocycle space C* is ils
orthogonal complement with respect to the standard inner product of Gl(é;R). The
dimension of C is q — p + ¢, where q is the number of edges, p is the number of
vertices and c is the number of components of G. The dimension of C* equals p — c.

REMARK. The number ¢ — p + ¢ is often called the cyclomatic number of G.
Similarly, p — ¢ is called the cocyclomatic number of G.

PROOF. First, we show that there is a linearly independent set of ¢ —p+ ¢ cycles
and a linearly independent set of p — ¢ cocycles of G. In fact, given any spanning
forest F' of G, the so called ‘fundamental’ cycles (respectively cocycles) associated
with F' are linearly independent:

Let e be an edge of the forest F', and let 7" be the component of F' which contains
e. Then the removal of the edge e from F separates the set of vertices of T into
two parts, one containing the head of e, the other its tail. The edges incident to
both sets form a cocycle C* of G, so that for any edge f € E(F), d4.(f) is equal
to £1 if e = f and zero otherwise. Thus we obtain a linearly independent set of
p — ¢ cocycles, one for each edge e that is not in F. These cocycles are called the
fundamental cocycles associated with F'.

Similarly, for any edge e € £(G) \ E(F), the subgraph of G induced by the edges
of F and the edge e contains exactly one cycle C, a so called fundamental cycle of
G. For any other edge f € E(G)\E(F), 05(f) equals +1 if e = f and zero otherwise.
Again, the set of ¢ — p + ¢ cycles obtained is linearly independent.

Next, we prove that € C Ker B and C* C (Ker B)*:

Let C be a cycle of G. Then, for any vertex v € V(G) we have

<6C77 617*> =0,

where dz is the cocycle defined by the edges incident to v: We only have to consider
the case where v is a vertex traversed by the cycle. Otherwise, the inner product is
trivially zero. It is easy to check that in all four remaining cases the inner product
evaluates to zero, too.

Hence, as d3- equals the row of B corresponding to vertex v, the product Bds
is the zero vector, that is, d¢ is in the kernel of B.

Similarly, let C* be a cocycle of G and let V' be one of the sets of vertices
the edges of C* are incident to. Then 05, = .\ d5-. Furthermore, for z €

(co)cyclomatic
number
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KerB and an arbitrary vertex v of G, the inner product of z and Jz vanishes.
Consequently, <Z’5€‘*> is equal to zero as well, which implies that d5. is in the
orthogonal complement of Ker B.

It remains to show, that dimKer B = ¢ —p + ¢ and dim(Ker B)* = p — ¢: Let x
be any vector with p components, and for any edge e, let h(e) be its head and ¢(e)
its tail in the (arbitrary) orientation of G. Then we have

B'x(e) = x(h(e)) — z(t(e))-

Hence, x is in the kernel of B!, if and only if x is constant on each component of G,
which implies that dim Ker B! = c.

B! is a function defined on the vertices of G, therefore we have

dimImB! = p —dimKerB! =p —c.

By the ‘row rank=column rank’ theorem, dimImB = dimIm B! = p —c.

Now consider the orthogonal decomposition

C'(G;R) = KerB @ (Ker B)*.
By standard results of linear algebra we obtain
dimKer B = dim €'(G;R) — dimImB = ¢ — p + c,
and
dim(KerB)* =p — ¢,

which concludes our proof. O

Up to this point we have considered linear spaces defined on a graph. We will now
turn our attention to the corresponding lattices:

DEFINITION 1.4. Consider the Abelian group €'(G;Z) of integer valued func-
tions defined on the edges of G. The lattice of integer cycles is the Abelian group
Cr=0€nN C’l(é;Z). Similarly, the lattice of integer cocycles is the Abelian group
et = C* N CY(G; ).

An integral basis B of a lattice L is a basis of the lattice so that each element
L € L can be written as an integral linear combination of the elements of the basis

B:
L= \bi,
i
where L € L, b; € B and \; € Z.

The following fundamental lemma is the foundation of the generalized form of
the Matrix-Tree-Theoremfor graphs:

LEMMA 1.5. Let G be a graph and let G be an arbitrary orientation of G. Let
M (resp. M*) be a matriz, so that its rows form an integral basis of the lattice of
integer cycles (cocycles) of G. Let E C &(G) be a set of q—p+ 1 (p— 1) edges
of G and let Mg be the restriction of M to the columns corresponding to E. Then
det Mg = 0 (det M, = 0) if E contains a cocycle (cycle) of G and det Mp = +1
(det M3, = £1) if E is a cotree (spanning tree) of G.

lattice of
integer
(co)cycles

integral basis
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PRrROOF. Let M be an integral basis of the lattice of integer cycles of G. We first
show that Mp is singular, if £ contains a cocycle C* of G: Consider the element
56* of the cocycle space as in Definition 1.2 and its restriction 55* g to the edges
in E. Then

Mp 6. |, = M bg. =

The first equation holds, because d. is nonzero on the edges of E only, and the
second equation holds, because the inner product of a cycle —i.e. a row of M — with
a cocycle is zero by Lemma 1.3.

The vector 56* 5 is not the zero vector, therefore the matrix My must be
singular.

On the other hand, if E does not contain a cocycle, the edges of E form a cotree
of G. Consider the fundamental cycles associated with the spanning tree E€,
explained in the proof of Lemma 1.3. Let 65 be the function corresponding to the
fundamental cycle determined by the edge e ‘€ E. These functions form a basis A
of the cycle space of G. As M also is a basis of the cycle space, there is a matrix T,
so that M = TA and therefore

Mg = (T A)g =T Ag.

For any two edges e and f in E, we have

5ée(f):{1ife:jj

0 otherwise.

Thus, the determinant of Ap equals +1. Because T must be non-singular, too, so
is M E-

In fact, A even is an integral basis of the lattice of integer cycles: Let C' be any
element of C;. As A is a basis of the cycle space, we have

C=> Aebg,
eckE
where A\, € R for e € E. Evaluating at an edge f € I/ we obtain C(f) = Ay, hence
the A\¢, e € E are integers.

Finally note that every matrix T transforming an integral basis of the lattice
of integer cycles into another must have determinant equal to +1. This follows,
because T has only integral entries — and so has its inverse. This in turn implies
that det Mg = 41, which is what we wanted to show.

An analogous argument shows the statement concerning an integral basis of
the cocycle space: We only need to replace the word cycle with the word cocycle,
spanning tree with cotree and vice versa. U

The proof of the generalized Matrix-Tree-Theorem for graphs requires the following
well known lemma from the theory of determinants:

CAUCHY-BINET-THEOREM. For (n x m) matrices A and B we have

det(A B') = " det A det B,
K

where n < m and K ranges over all n-element subsets of {1,2,...,m}.
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PROOF. Let A = (a;;)i= L.n and B = (b; ;) i— Ln- Using the definition of the
j=1. j=1..m
determinant we get

det(A B') = > sgn 7 - f[ Zm: @i (i),

7 permutation of [n] =1 j5=1
= > s ]Jaisibe. 0
filnlsm] =t

We define w(m, f) = sgn - [[i1 a; s(3)br(i),f) and get

= Z w(m, f) + Z w(m, f).

Fin]s{m] filn)s[m)

f injective f not injective

Next we show that the first sum equals ), det Ak det Bg:

> senm- [ aismbeay. s
=1

filn)s[m)
f injective

= > Z sgu 7 - Half

KC[m]
fin]—K
|K|=n f 1£1J13ct1ve

=Y > senf-[aise - (Z sgn m sgn f - an(i),f(i))
K  fin]—K i=1 T i—1

f injective

= det Ag det By.
K

Finally we have to show that the second sum vanishes. To achieve this we define
an involution on the pairs (w, f) where 7 is a permutation of [n] and f : [n] — [m]
is not injective: Let « be the smallest number so that f(k) = f(I) = « for distinct
k and I. Let (k,l) be minimal in {(k,l), f(k) = f(I) = a} with respect to the
lexicographic ordering. Define (7, f) = (7o (k,1), f). Clearly ¢? = ¢ and

n

w(p(m, £)) = sgn (r o (k1)) - [T @i, beroten)iy,ra)

=1

n
= —sgn T H @i, £(i)Or (i), £ (i)
=1

= —U)(7T, f)
This proves the theorem. ]

We are now ready to prove the generalized Matrix-Tree-Theorem for graphs:
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THEOREM 1.6 (Maurer 1976). Let G be a connected graph and let M (resp. M*)
be a matriz, so that its rows form an integral basis of the lattice of integer cycles
(cocycles) of G. Then the number t(G) of spanning trees of G is

* * M
t(G) = det (M* X (M*)") = £det (M x)
Similarly, the number ¢(G) of cotrees of G is

c(@) = det (M X M') = £ det (1\1/}4)()

REMARK. Note that for unweighted graphs, t(G) = ¢(G).

PRrOOF. The first equation follows from the Cauchy-Binet-Theorem and from
Lemma 1.5:

det (M* X (M*)") = " det(Mj X ) det(Mj)!
K

= det X (det M),
K

By Lemma 1.5 we know that det M} = £1 whenever K C £(G) corresponds to a
spanning tree and zero otherwise. Hence we have

det(M* X (M*)!) = > detXkg.
K spanning tree

To prove the second equation, consider the square matrix P = (1\1\4/I ) Calculat-
ing the determinant of PP! we get

MM! M M*
ty
det(P P*) = det (M* M M M*t>
t
= det (MOM M*OM*t> = (det(M Mt))2.

Hence det P = +det(M M!). Now consider the product
M M M M M**
det <(M X) P) = det <M XM M*X M*t>

M M! 0
= det <M* X M M X M*t> = +det P - t(G).
Provided that det P # 0, we get the desired result by dividing both sides by det P.

The expressions for the number of cotrees of G follow similarly. O

The question remains, how to get an integral basis of the lattice of integer cycles
(cocycles). In the proof of Lemma 1.5 we have already seen that — informally spoken
— the fundamental cycles associated with some spanning forest form such a basis.
One might expect (see [36]) that any set of ¢ — p + 1 linearly independent cycles is
an integral basis. However, as the following example shows, this is not true:
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3

An orientation of the
complete graph Ky

6 6
5 4 4 o
1
2 2
3 3

A cycle x A cycle y A cycle z

FIiGURE 1

ExampLE 1.7. Consider the orientation of the complete graph on four vertices
K, depicted in Figure 1. Then the cycles z, y and z indicated in the figure are
certainly linearly independent, but they do not form an integral basis of the lattice
of integer cycles! Consider the matrix which has rows ¢, d, and 0,:

1 2 3 4 ) 6
z[f1 -1 0 -1 -1 0
1 0 1 1 0 -1
z\0 -1 1 0 1 1

The determinant of any submatrix corresponding to a cotree is equal to £2.
However, we can show the following useful fact:

LEMMA 1.8. Let Cy, Cs, ..., C. be a set of subgraphs of a graph G, where
c is the (co)cyclomatic number of G. Suppose that the corresponding functions
561’562""5@ form a basis of the (co)cycle space. If for any two subgraphs C;
and Cj, the orientation of edges common to both is always the same, or always
different, then the corresponding functions form an integral basis of the lattice of
integer (co)cycles of G.

PROOF. Let C be an element of the lattice of integer (co)cycles of G. Then we
can express C as a linear combination of the functions d., e € £(G), with d.(f) = 1,
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if e = f and 6.(f) = 0 otherwise:

(*) C= Z Kele,

ec&(G)

where k. € Z for e € E(G).

We show by induction on the number of edges of G, that C' is a Z-linear combi-
nation of the functions dc¢,, 7 € {1,2,...,c}.

If G has no edges, the conclusion is trivial. Suppose that there is an edge
e € (@) that occurs only in one subgraph Cy. Then d¢,(e) = £1 and d¢,(e) =0
for ¢ # 0. Consider the graph G|, which is obtained by deleting this edge from G.
Because e occurred only in the subgraph Cj, the set of functions d¢;, ¢ # 0 is a basis
of its (co)cycle space.

Now express C as an R-linear combination of the functions dc;:

q—p+1
C= Y o,
i=1
where \; € R for i € {1,2,...,c}. There are now two possible cases to distinguish:

if Ao = 0, we can consider C as an element of the lattice of integer (co)cycles of
the reduced graph G|,... By the induction hypothesis then, C' can be expressed as a
Z-linear combination of the d¢;,.

Otherwise, if Ay # 0, then C" = C' — X\¢d¢, is an element of the lattice of integer
(co)cycles of G|,... By Equation (x) above we obtain

1 , Ke
S0 (C(e) — C'(e)) oo
Since ke € Z and ¢, (e) = £1, Ao is an integer, too. By the induction hypothesis,
C' can be expressed as a Z-linear combination of the d¢,. Therefore, C' = C'+ A\yd,
is also a Z-linear combination of the dc;.
In general, there might not be an edge that occurs only in one of the subgraphs
C;. In this case, let Cy be any of the subgraphs in which e occurs and let 5(;{ =dc, —
XoAide, for i € {1,2,...,c}, i # 0. Because we required that edges common to Cj
and C}; are always traversed in the same direction or always in the opposite direction,
dcy is again an element of the lattice of integer (co)cycles with entries in {0, +1}.
Since the edge e occurs only in Cy, but not in C for ¢ € {1,2,...,c}, we can apply
the first part of this proof to show that the set of functions 501( forie{1,2,...,c},
i # 0 together with ¢, is an integral basis. Because of dcr = d¢, £ ¢, the functions
dc, with 4 € {1,2,...,c} form an integral basis as well. O

Ao

This lemma shows, that not only the fundamental cocycles associated with a span-
ning tree, but also the cocycles corresponding to the vertices of G form an integral
basis of the lattice of integer cocycles. Similarly, for any planar graph G, the cycles
corresponding to the faces of G form an integral basis of the lattice of integer cycles
of G. This reflects the fact, that a planar graph and its dual have the same number
of spanning trees, as the incidence matrix of G* coincides with this basis.
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2. Spectra of Graphs

It is an astonishing fact, that the spectra of the various matrices associated with
a graph contain a lot of structural information of the graph. In particular, also the
spanning tree number is determined by the spectra of those matrices. This enables
us to apply methods known from linear algebra and the theory of spectra to the
problem of counting the spanning trees of a graph.

DEFINITION 2.1. The (ordinary) spectrum of a (di)graph G consists of the zeros
of its characteristic polynomial Pg(\) = det(A\I — A), where A is the adjacency
matrix of G. The C-spectrum consists of the zeros of C(\) = det(AI — C), where
C is the Kirchhoff Matrix of G, and the Q-spectrum of a graph without isolated
vertices consists of the zeros of Qg(\) = det(A\I — D 'A) = det(\I - AD!) =
det(A\I — D /2AD /2), where D is the degree matrix of G.

REMARK. Q(A) = D 'A is called stochasticization of A, as it is the matrix
obtained from A by dividing each entry by the column-sum of the column it is in.

REMARK. Clearly, for r-regular digraphs, these spectra are all equivalent:
Po(A) = (=1)PCq(r — A) =rPQa(N/r).

Recall, that a graph is semiregular, if it is bipartite and the vertices of each part
have the same degree. Surprisingly, for semiregular graphs the ordinary and the
Q-spectrum are equivalent as well: Denote the parts of G by X and Y, so that
dg(z) =1 for x € V(X) and dg(y) = re for y € V(Y). If we order the vertices of
G so that all vertices in X precede those in Y, then the adjacency and the degree
matrix of G have the form

Ag = (Aot ﬁ) and Dg = <T(1)I rSI) respectively.

Hence we have

Qu(N) = det(\I - D/?AD?)

0 1/rirs A
:det<AI_<1/MAt / 012 >>
=det(A\I — 1/\/rir2 Ag)

- ﬁmmx).

LEMMA 2.2. For any (n x n) matric M the characteristic polynomial can be
expressed in terms of determinants of principal minors of the matriz:

n

det(AI— M) = > (=1)" '\ Y~ det Mge.
1=0 KCln]
| K=l

ordinary,
C and
Q-spectrum
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PrROOF. By the definition of the determinant we have

detOMI—-M) = > sgnm [J(AT—M);
T permutation i€[n]
of [n]

= Z sgn WZ Z H (AL H —M)i (-

7« permutation [=0 KC[n]i€eK ¢ K
of [n] |K|= l

Note that (AL); r(;) is nonzero only if 7|, = id; in this case [ ;¢ j (A); x(;) evaluates
to Al. Hence we get:

n
det(\T—M) =>" > Adet(-Mge),
1=0 KC|[n)
|K|=l
which is what we wanted to show. Ol

THEOREM 2.3. The number of spanning trees of a graph or Eulerian digraph can
be expressed in terms of its different spectra. When A is the adjacency matriz of G,
C the Laplacian matriz of G and Q the stochasticization of A, we have

. Y ) (Y

(1) t(G) = p Pg() p
AFET

eigenvalue of A

‘)\:r

for r-reqular graphs and Eulerian digraphs, and

P1—P2

e [ ?
(2) t(G) - 2(] g Pé(A)‘)\:m
1 p1—1272—1
r -
_ L <_1> I (frm-»
2p1 \r2
AFAN/T1IT2

etgenvalue of A

for semireqular graphs and semireqular Fulerian digraphs with degrees ri and ra
and parts of size p1 and p2, where q denotes the sum of the edge-weights of G.
Furthermore, we have

(_l)pil !
3) HG) = —— bW,y = TTA
p /\750
eigenvalue of C

. d; P d;
LN O Ny § (TN
2q 2q v

etgenvalue of Q
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for graphs and Eulerian digraphs. Again, q denotes the sum of the edge-weights of
G.

PROOF. By Lemma 2.2 we have for any (p x p) matrix M
p
(det(AT = M))'|,_y = (=171 ) det Me.
k=1

Using the BEST-Theorem (see Corollary 1.1) and the Matrix-Tree-Theorem, Equa-
tions (1) and (3) follow. For showing Equation (4), observe that

Qu(N|,_, = (det(A\I - D' A))’

A=1
= (det (A +1)I —D*A))’

A=0
= (det(\I - D~ 'C))’

A=0

Equation (2) follows from the equivalence of the ordinary spectrum and the Q-
spectrum described in the remark at the beginning of this section. O

REMARK. In some cases the following observation may help, too: Every graph
can be ‘regularised’ by adding r — d(v) loops to vertices v with degree lower than
r = max,cy(q) dg(v). Obviously, the resulting graph G’ has the same number of
spanning trees as G. Unfortunately though, most operations on graphs produce a
different result when G is altered this way. Anyway, we have

Ca(A) = (=1)PPer(r —A)
= (—r)PQe¢ (1 — \/r).

Note that the C-spectrum remains invariant when loops are added to the graph.
Sometimes graphs occur that are ‘nearly k-regular’, that is, all vertices except
of one — r — have the same degree k. In this case we have

t(G) = det(Dg — Ag)pe = det(kI — Aye)

Note that in general G|,. is not regular!
The following well known lemmas will be very useful:

LEMMA 2.4. If A is a nonsingular, square matriz, we have

A B _
det (c D) = det(A) det(D — CA™!B).

LEMMA 2.5. For (n x m) matrices A and B we have

det(AI — ABY) = A" ™ det(\I — B'A).
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ProOF. Consider the matrices

I B! q AL A
A ) M\B 1)
Clearly, they have the same determinant. By Lemma 2.4 the first evaluates to
det(AI — AB?), the second to A"~ det(A\I — B'A). O
LEMMA 2.6. For a bipartite graph G we have
Pg(A) = (=1)PPg(=A) and
Qa(A) = (=1)PQa(=A).

PrOOF. As G is bipartite, its adjacency matrix has the form Ag = (jgt ‘3).
Suppose the parts of G have p; and ps vertices respectively. Then

— >‘Ip1 —A
det(AI — Ag) = det <—At >‘Ip2>

=1 A
— (__1)P1 P1
= (—1)P* det ( At X[pz)
=l —A
— (_1\P1t+P2 P1
=(-1) det ( At _X[pz)
— (—1)” det(— AL — Ag).

The statement about the Q-spectrum follows just as easy, it is only messier to notate.
O

REMARK. In fact, the converse is true as well. See [15].

LEMMA 2.7. If A is an (n x n) circulant matriz, i.e., ay, a1, ..., Gp_1 are
arbitrary numbers and A = (a;j; mod n)i,je{o,1,...n—1}, then

n—1
det(M—A) = J] (A= aw?),
1=0

wiwn=1
where w runs through all n' roots of unity.
PRrOOF. This will be shown in Section 3, using the concept of automorphisms
of a graph. O
We are now able to exploit known relations for the adjacency matrix of graphs:

LEMMA 2.8. For the complement G of a graph G, the direct sum +"_,G; and
the complete product <7;—,G; of graphs G;, i = 1,2,...,n, we have the following
relations:

e = (-1 = Calp =N,
Cir,6.(N) =[] Ca. ),
1=1

A=p+pi

Cyr_a;(A) =AXA—p)"
=1
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REMARK. The proofs are taken from [15].

PROOF. For the direct sum Gy + G5 of two graphs G and G2 we have

Cq 0

From the Laplacian development of the determinant, the statement follows.
For the complementary graph G of a graph G we have

Ca(A) =det( AI—(p—1)I+D+J—I—A)
=det (A—p)I+J+D—A).
Adding all rows except the first to the first row of the determinant, every entry of

the first row becomes equal to A. Taking this factor out and then subtracting the
first row from all other rows, we obtain

1...1
Ce(A) = Adet <((>\_p)I+D —A)1c> ’

where (X)ic denotes the submatrix obtained from X by deleting its first row. On
the other hand, we have

det (()\ —p)I+D-— A) = (—1)PCqa(p —N).
Again, adding all other rows to the first row, every entry of the first row becomes
equal to A — p. Taking this factor out, we obtain the required result

ColN) = (-1 32— Clalp — A).

Now the formula for Cyr_ g, ()) follows very easily from the fact that 7L, G; =
—i-’fb:l@i:

)

Con c;(A) = CH”:l@i (\)

A
= (—l)pA—_pCJF,L G, (=)

n

H

, A
H 1y L2 Ca (pi—p + V)

- P—A—Dp;
H >\ p+pz)
>\ P+ pi

=1
O

EXAMPLE 2.9. The complete multipartite graph K, ;, ., can be expressed as
the complete product of the graphs O,,,O,,,...O,,, where O, denotes the graph
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consisting of p isolated vertices. O, again is the direct sum of p copies of a single
vertex. Hence, Cp,(A\) = AP and

Otprppn V) = MA=p)" [T = p - pi) .

i=1
Therefore, by Theorem 2.3 we have
(=1
By nrn) == Oty V],
—1)p-1 e B
= i (A —p)" 1H()\_p+pi)pl 1
p i=1 A=0
n
=p" [0 —po)Pi".
i=1

Before we give some more examples, we need to calculate the spectra of two
very simple graphs, the path P, and the circle C),. For doing this, it will be helpful
to recall some properties of the well-known Chebyshev polynomials. We will then
see the reason for the close connection between certain spanning tree formulas and
Chebyshev polynomials.

REMARK. The Chebyshev polynomials of the first kind are defined as T),(z) =
cos(narccos z). It can be shown that

L) = 3 (@@ + VA~ 1)" + (2~ Va? —1)")
and
T (2) = (—1)" T ().
Similarly, the Chebyshev polynomials of the second kind are defined as Uy, (z) =

sin((n+1) arccos z)

- . We can calculate its zeros and obtain
sin(arccos x)

- k
Un(x):2”H<x—cosn:1>.

k=1

It can be shown, that

wﬁ((x +Va? =) — (o = Va? 1)”“)
for |z] #1

Un(x) =

(sgn z)"(n+1) for x = +1
and
Up(z) = (—1)"Up(—2x).
Furthermore, they satisfy the recursion

Un(z) = 20Up_1(x) — Up—o(x).
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LEMMA 2.10. The ordinary, the C-characteristic and the Q-characteristic poly-
nomials of the path P, are

Pp,(\) = Uy (%) : Cr,(A) = AUp-1 <¥>

and

-1
Qr,(A) = 5= Up—2(A).

The ordinary, the C-characteristic and the Q-characteristic polynomials of the circle

C, are
eor=a(n(2) ). an-s(a(57) )

Qc,(\) = -1 (Tp(A) —1).

respectively.

and

PROOF. Let A, denote the (p x p) matrix

A—2 1 0o ..o 0
1 A—=2 1 0
0
0
0 1 A=-2 1
0 ... 0 1 A—1

We adopt the convention A; = (A —1). Then, for p > 1, by Lemma 2.4 Cp,(A)
equals

A—1 1 0 0
1

det | O Apt = (A—1)det A, ; —det A, o.
0

By the Laplacian development we get
det A, =(A—2)det A, —det A, .
Clearly, Cp, () satisfies the same recursion, with initial conditions Cp,(\) = A(A—2)
and Cp,(A) = A(A — 1)(A — 3). By the remark above we have
A—2
2 )

Cr,(A) = AU, (
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The statements concerning the ordinary and the Q-characteristic polynomials are
deduced similarly.

The circle C}, has a so called ‘circulant’ matrix as its adjacency matrix. Em-
ploying Lemma 2.7 we can calculate its eigenvalues: The first row of the adjacency

matrix Ag, of the circle is (0,1,0,...,0,1). Hence, applying the lemma we obtain
P
Po, V) =[]V -w-w)
k=1

P

2k

= H()\ — 2cos —W),
p

k

Il
=

where w is a p'® root of unity. As the circle is a regular graph, using Remark 2
we immediately deduce the expressions for the C- and Q-characteristic polynomial.
O

Now we can easily compute the number of spanning trees of the fan and the
wheel:

ExaMPLE 2.11. The fan Fj, is the complete product of a single vertex and the
path P,. Thus, by Lemma 2.8 and Lemma 2.10

Cryvp,(A) =AA—n— 1)CK1(>\ —n) Cp,(A—1)

A—n A—1
AA—n—1)
SR VAR A ~1
o Cn(A-1)
AA—n—1) A—3
=22 - nu, | ==
Cre-ne (45
:A(A—n—l)Un(E)
2
Using Theorem 2.3 we finally get
3
t(Fn)—Un(E)

1

5[0 - (=)

ExaMpPLE 2.12. The wheel W,, is the complete product of a single vertex and
the circle C},. Thus, as before, we have

Crroo, () = A(A—n — 1) T2 =n) e, (A = 1)

A—n A—1
_AMA=n-—1)

_ 7’\(’\;_”1_ 1)2<Tp (%) - (—1)”).
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H(W,) = 2<Tn (g) - 1)
3+v5)  [3-V5\
) -

Using the remark after the proof of Theorem 2.3 we can give even easier proofs
for more general results:

Finally we get

EXAMPLE 2.13. Let F¥ be the graph obtained from F}, by replacing each edge
on the rim by a path consisting of k edges. Its dual (E¥)* is nearly (2 + k)-regular
and, if r denotes the exceptional vertex, (F,’f)* s 18 the path on n—1 vertices. Hence

k+2
t(Fy) = Pp,_,(2+k) =Un <T> :

EXAMPLE 2.14. Similarly, let W,’f be the graph obtained from W, by replacing
each edge on the rim by a path consisting of &k edges. Its dual (W})* is nearly
(2 + k)-regular and, if r denotes the exceptional vertex, (W}r)* . is the circle on n
vertices. Hence

tWhy =Po, (2+k) =2 (Tn (%) - 1) .

LEMMA 2.15. Let G be an r-regular graph. Then its line graph £(G) is 2(r —1)-
reqular and its characteristic polynomial is

PE(G’)(A) = ()\ + 2)q—pPG(>\ +2— T).

If G is semireqular, then its line graph is regular of degree vy + ro — 2 and its
characteristic polynomial is

fora;=A+2—r; fori=1, 2.

REMARK. Note, that the line graph of a graph G is regular, if and only if G is
regular or semiregular!

PRrROOF. Let B be the incidence matrix of G with all entries made positive. Then

we can express the adjacency matrix of a graph G and its line graph £(G) in terms
of B:

Ag=BB'—Dand Ag =B'B—2L
Now we can calculate the P-spectrum of £(G):
Pg(cy(A) = det (A + 2)I, — B'B)
(%) = (A+2)7 Pdet ((A+2)I, — BBY)
=(A+2)7Pdet (A +2)I,-Ag—Dg).
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If G is r-regular, Dg = rl, therefore
PE(G’)(A) = ()\ + 2)q—pPG(>\ +2— T).

For semiregular graphs we have

det (A +2)I, — Ag — Dg) = det ((A+2—r1)1p1 —A )

—At ()\—’—2 —T2)1p2
- Oéllpl —A
= det (—At L,
1
= Oélpl det <a21p2 — a—lAtA>
= 1”2 det(agazl,, — A'A), but also

= a2p2—p1 det(alaglpl — AAt)

Multiplying the last two lines and taking the square root we get

p1—p2 t
et AA' 0
= (a_2> det <a1a21 — ( 0 AtA> ),

and because of ( 2, 13)2 = (A(‘)"t A2 ) We obtain

det (A +2)I, — A — D¢)

det (()\ +2)I, - Ag — Dg) = \/(ﬂ>m_p2 P ()

a2

_ \/(_ﬂ>m_m Pe(y/ara) Pe(—ara).

a2

Because the spectrum of a bipartite graph is symmetric by Lemma 2.6, we have

det (A +2)T, ~ Ag — Dg) = J (-2)" " oty
- (“—) " Palyara).
(o’

Combining this with Equation (x) we get the desired result.
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O

Now we can see how the number of spanning trees of a (semi)regular graph and its

line graph are related to each other:

PROPOSITION 2.16. Let G be an r-regular graph. Then

teia) = 26

2
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If G is semiregular of degrees r1 and ry we have
q—p+1 p2—p1
te(e) = T (1T )
rr2 T2

PRrROOF. For a r-regular graph G we have

Pa@O|,_y, ) = A+ PPEN] Ly
= (2017 Py (r).

By Theorem 2.3 the proposition follows. If G is semiregular, we have

Pl (A ‘
S(G)( ) A=ri+r2—2
1g1’2 +
_ aq aq a2
= (A+2)77P (—) ———=Pi(ara2)
(65 2,/a1a2 Ny g2
P1—P2
2

This proposition leads to a strange proof of Cayley’s theorem:

EXAMPLE 2.17. The complete graph K, is the line graph of the star S, which
is semiregular of degrees p and one. Hence

0 _
t(Kp) = L;l) (Z—;)p Lot

We now turn to the so-called NEPS of graphs. For regular graphs, everything is
very easy. In this case, we can use the ordinary spectrum to calculate the number
of spanning trees. Although the following theorem is true for graphs which are not
regular as well, it is of no use for our purposes, as it is only valid for the ordinary
spectrum!

THEOREM 2.18. The NEPS G with basis B of the graphs Gy, Go, ..., Gy,
whose adjacency matrices are Ay, Ao, ..., A,, has adjacency matriz
BeB

Suppose that the graph G; has p; vertices and its (ordinary) spectrum is N1, ..., Xip,
fori=1,2,...,n. Then the spectrum of the NEPS G consists of all possible values
of Niyis,....in» where

Niyinyosin = Z Afill s Ag?n
BeB

fori.=1,2,...,pp and k =1,2,...,n.
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PRrOOF. The entries of A are

A(ul,m,...,un)(vl,v2,...,vn) = Z(Afl)mm e (Agn)unvn
BeB

Hence, the vertices (u1,ug, ..., u,) and (v1,vs,...,v,) of G are connected if and only
if there is a 0 € B so that (Afl)ulul # 0 for all s € {1,2,...,n}. This is precisely
the definition of the NEPS.

We can now prove the statement about the eigenvalues of the NEPS G: Since
A;, the adjacency matrix of G, is normal, there are linearly independent vectors x;;
such that A;x;; = Ajjx;; fore=1,2,...,nand j =1,2,...,p;. Consider the vector
X = X1j; ® - ®Xy;,. Using the fact that (A®B)- (C®D) = (AC) ® (BD) we get

Ax = Z(Afl ®--® Alm)x

peB
S M) @8 (A,
- 1 Al n “nin
BeB
=" (\ixi) ® - ® (A %ni,)
121 14y Nip < Nin
BeB
=A X.

11 7i27---7in

This yields p1p2 . . . p, eigenvectors. As A has dimension pips . .. p,, a basis of eigen-
vectors has been determined. O

Unfortunately, for NEPS of graphs which are not regular, we can not apply the
preceding theorem to find their eigenvalues. Only for two special cases we can find
workarounds:

The Kronecker sum G @& H of two graphs G and H with pg and ppy vertices,
respectively, is represented by the NEPS with basis {(1,0), (0,1)}. Hence, its adja-
cency matrix and its degree matrix are

Agon =Ac®IL,, +1,, ® Ay,
DG@H = DG ®IPH —+ IPG %) DH.

Therefore,

Caou(N) = det(AI — Dgeon + Agepn)
=det(NI-Dg 1L, —L,,®Dy+Ac®L,, +I,,®Ay)
= det(\ — (Dg — Ag)®1,, —I,, @ Dy — Ap).

Hence, by the theorem above, the C-eigenvalues of G @ H are all possible sums of
a C-eigenvalue of G with a C-eigenvalue of H. In fact, the Kronecker sum of two
graphs is essentially unchanged when loops are added to some to some of the vertices:
Loops in G or H are transformed into loops of G @ H. Hence, we may ‘regularise’ G
and H as described after Theorem 2.3, by adding an appropriate number of loops.
Then we can use Theorem 2.18 directly.
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EXAMPLE 2.19. The (I x m) square lattice is the Kronecker sum of two paths
P, and P,,. Therefore we have

) :
t(PzGBPm)Zm H <4+2(cos7rTj+cos%k>>.

Ge{1,2,...0}
ke{l,2,...m}
(4, k) #(L,m)

This does not look very nice, but at least we get a nice formula for the ladder
L, =P, & Py:

1 k k
(e P, = o H <2—|—2(:os %) H (4+ZCOS %)

ke{1,2,...,n—1} ke{1,2,...,n}
2
= m n—1(=1)Up—1(-2)
= Upn-1(2)
1 n n
23 [(
By very similar calculations it can be shown that the number of spanning trees of
the complete prism K, & P,, equals

2 n—1
t(Kp ® Py) = n" 2 (Um_1 <” + )) :

2

and the number of spanning trees of the complete cyclic prism K, & C), equals

n—1 n—1
t(KneaCm):an (Tm(”;2>—1> .

The Kronecker product G ® H of graphs G and H is represented by the NEPS
with basis {(1,1)}. Its adjacency matrix and its degree matrix are
Agon = Ag ® Ap,
Dgon = Dg ® Dy.

It turns out that, this time, the Q-spectrum is the right choice, as we have

Qaen(N) = det (NI — D¢l yAgen)
=det (\I— (D' ®D ') (Aq ® Ap))
= det (\I - (D;'A¢) ® (D' An)).

Hence, by Theorem 2.18, the Q-eigenvalues of G ® H are all possible products of a
Q-eigenvalue of G with a Q-eigenvalue of H. Note, that loops in G or H do affect
the Kronecker product G ® H!

Chow [12] used this fact to prove an interesting theorem about the Kronecker
product of bipartite graphs. Before proving his result, we need the following lemma:
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LEMMA 2.20. Let Ay, As, ..., A, be matrices whose column sums are nonzero.
Then, for the stochasticization of the tensor product of these matrices we have

Q <®Ai) =X Q).
=1 =1

Proor. We have

() (@) () - -un

13
where D; is the degree matrix of the graph represented by A,;. U

THEOREM 2.21. Let Gy, G, ..., Gy, be connected bipartite weighted (di)graphs.
Then G = Q;_, G; has 27=1 connected components, each of which is also a connected
bipartite weighted (di)graph. The Q-spectra of the connected components are all
equal, up to the multiplicity of the eigenvalue zero.

ProOF. For i € {1,2,...,n}, the adjacency matrix of G; can be written as
0o A"
Ag, = ( Agl) 0 )
symmetric.) By reordering the vertices of the Kronecker product G we find that its
adjacency matrix can be represented by

(Note that the adjacency matrix of a digraph need not be

Ag = Qi A )

where (; can be either zero or one, and  runs through all 2" possible combinations.
For example, for n = 2 we get

0 AP @AY
AV oAl 0

Aloal o
Hence, for the component of G' corresponding to 8 we have

0 ®LA
AHﬁ = <®n A(l_ﬂi) 10

1=1""1
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Now we can compute the Q-characteristic polynomials of the components of G:
Qi (N) = det (AL — Q(Ap,))

a (@0, A1)
(ot )
) ®a(ar )
)

— A=l det <>\I—®Q<
a(af ™))

=det | \NI —

3

=1

— Al det <>\I - ® Q (
i=1
By Lemma 2.5, the spectra of the matrices
Q (Al(ﬂi)) Q (Al(l—ﬂi)) and Q ( (1- /31)) Q (Al(ﬂi))

are equal up to the multiplicity of the eigenvalue zero. To conclude the proof, note
that by Theorem 2.18 the spectrum of a Kronecker product consists of all possible
products of eigenvalues of its factors counting multiplicities. O

For n = 2, this theorem provides a simple relation between the spanning trees of the
two connected components of G; ® Go:

COROLLARY 2.22. Let G1 = (X1,Y1) and Gy = (Xo,Y2) be weighted bipartite
graphs. (In fact, one of them can even be a digraph.) Let H; = (X1 x X2,Y; x Y5)
and Hy = (X1 x Y,Y] X X3) be the two connected components of Gy @ Go. Then

t(HI): Hvede(U) [Xal= ] M | X1 [=[Y1]
t(H2)  \ Iloey, d(v) [M,e, 40)

PROOF. Suppose that G2 has symmetric adjacency matrix. Then any edge of
G = (1 ® G2 has weight

(AG)(ucz;,vy) = (AGI)(U,U)(AGQ)(:E,y)
= (AG1) (uw) (Aa) (y,2)
= (AG)(uy,vm)a

hence the bijection between the edges of H; and H, that sends (ux,vy) to (uy,vz)
is weight-preserving. Therefore, the sums of the edge-weights are the same in H;
and Hy. By Theorem 2.3, (4) we get

I a)( JI a=-»)=tm@)( ] «)( [ a-x»).

vEV(Hz) A#1 vEV(H1) A#1
Q-eigenvalue of H» Q-eigenvalue of H;
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By Theorem 2.21, the Q-eigenvalues of H; and Hs are the same up to the multiplicity
of the eigenvalue zero. Hence we are left with

t(H)( ][] d)=tEH)( ][] )
veV(H>) veV(Hy)

By the definition of the Kronecker product we find that the product of the degrees
of the vertices in H; is

X X Y Y
(H du)| 2|( H dv)‘ 1\(H dv)‘ 2|(H du)| 1\,
veXy vEX2 vEY] vEY>
and the product of the degrees of the vertices in Hy is
Y X X Y
(H dv)‘ 2|(H du)| 1|(H du)| 2|( H dv)‘ 1|_
veX] vEYs veEY] vEX>o
This concludes the proof. O

This corollary yields some rather nice proportions. For instance:

EXAMPLE 2.23. The even and odd Aztec rectangles are the components of the
graph P, 11 ® P11 Therefore, the even Aztec rectangle has exactly four times as
many spanning trees as the odd Aztec rectangle.

3. Automorphisms on Graphs

Often we want to determine the number of spanning trees of graphs with a
high degree of symmetry. For such graphs, the method presented in this section is
appropriate.

DEFINITION 3.1. An automorphism T on a (di)graph G is a permutation of
the vertices of G which leaves their incidence relation invariant: (u,v) € £(G) <
(Tu, Tv) € £(G). Equivalently, the matrix representing the automorphism and the
adjacency matrix of the graph commute. In the following, we will use the notation
T both for the permutation and its matrix.

The following well known lemma leads us directly towards a method for counting
the spanning trees of graphs which possess an automorphism with large orbits:

LEMMA 3.2. Let A and B be real matrices which can be diagonalised. Then A
and B have a common basis of eigenvectors if and only if they commute.

PROOF. Let A be an eigenvalue of A with multiplicity k. Consider a basis of
eigenvectors {xy, Xa, ..., Xy} associated with A. Let x be an eigenvector of A. Then

A(Bx) = BAx = BAx = A\(Bx).

Thus, for every eigenvector x of A, the vector Bx is also an eigenvector of A. Hence,
Bx must be a linear combination of the x;’s, i € {1,2,...,k}. Therefore

k
BXi = Z CijXj.
J=1

automorphism
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Now consider the effect of B on a linear combination Z?Zl a;X;:

k k k k k
B(Y aixi) = Y ai Y cixy = (3 ey )x;
j=1 i=1  j=1 j=1 i=1
This implies, that E?:l a;x; is an eigenvector of B if and only if
k
Zaicij = [a; for j € {1,2,... ,k}
1=1
or equivalently, if
Ca = pa.

Two linear combinations E?Zl a;x; and 2?21 alx; are linearly independent if and
only if a and a’ are linearly independent. Therefore we need k linearly independent
eigenvectors of C. These exist if and only if C can be diagonalised. Because of

C 0
BT_T<0 C,),

it follows that C can be diagonalised if and only if B can be diagonalised. O

Let G be a graph with vertices 1, 2, ..., p. Consider an automorphism T of
G and let x = (a1, az,...,ap) be an eigenvector T with corresponding eigenvalue w.
Clearly,

wx = Tx = (at1,ars, ... ,an)t.

Hence, a; = %aTi, ar; = %GT% ceey Qpky—1; = %ai for all vertices 7, where k; is
the length of the orbit the vertex belongs to. It follows that a; = ﬁai. Therefore,
whenever a; # 0, we have whi = 1.

Summarizing, after rearranging the vertices of GG, we see that the eigenvectors
of T can be chosen to be of the form

_ k1—1 kn—1\t
x = (a1, 01w, ..., aW" "L A, W, . G T )

where w* =1 for a; # 0, and n is the number of orbits of T. Because of the lemma
above, for all of the matrices A, (D — A) and D~ /2AD~'/2, there exists a basis
of eigenvectors which is also a basis of eigenvectors of T and whose elements are of
the form displayed above.

Now we can easily derive the characteristic polynomial of the graph by solving
its characteristic equation for a1, a9, ..., ap, i.e.

Ax, for obtaining the ordinary spectrum
Ax = ¢ (D — A)x, for obtaining the C-spectrum
D 1/2AD /2%, for obtaining the Q-spectrum
and so on. Note that, if T is an automorphism of G, the matrices D and T commute
as well.

Now we see that Lemma 2.7 stated in Section 2 is an almost trivial consequence
of the preceding paragraphs:
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LEMMA 3.3. If A is an (n x n) circulant matriz, i.e., ay, a1, ..., Gp_1 ar€
arbitrary numbers and A = (a;j—; mod n)i,je{o,1,...n—1}, then

n—1
detOI—A) = J] A=Y aw),
1=0

wh=1
where w runs through all n' roots of unity.
PROOF. Just note that T = (1 2 ... p) is an automorphism of A. O

REMARK. The distance of two vertices u and v is the length of the shortest path
joining v and v. A graph is called distance-regular, if there are integers b; and ¢;
(1 > 0), such that for any two vertices v and v at distance i, there are precisely ¢;
neighbours of u at distance ¢+ — 1 to v and b; neighbours of u at distance 7 + 1 to v.

Distance-regular graphs have ‘large’ automorphism-groups. For some special
families of such graphs the eigenvalues can be computed using this properties. See,
for example, [8], Theorem 8.3.1.

4. Restriction of Infinite Graphs

In this section we will exploit the fact that the eigenfunctions of the infinite
grid-graph are known and can be used to guess the eigenvectors of finite subgraphs
of the infinite grid-graph. This is an idea of Kenyon, Propp and Wilson, see [23].

Consider the infinite grid-graph Z? = Z @ Z. We can identify a vertex with a
pair of integers, with (0,0) as origin. Sometimes though it will be convenient to
specify a different origin, usually (,1). In any case, two vertices (u,v) and (z,v)
are connected by an edge if and only if [u — 2| =1 and |[v — y| =0 or |u — z| = 0 and
|v —y| = 1. Clearly, the Laplacian operator, i.e., the operator which maps (z,z) to
the degree of vertex z and (z,y) to the weight of the edge (x,y), is

Cy2: C(Z2) — (22
f(xvy) '—>4f($,y)+f($—1,y)+f($+1,y) +f($,y_1)+f($,y+1)

An eigenfunction of Cy2 must satisfy

Cpa(f) = AS-
Such an eigenfunction can be constructed for each pair of complex numbers ¢ and
n by putting f(z,y) =" and A=4—-¢—¢ ' —n—n L
Now consider a finite subgraph G of Z?. Select eigenfunctions of Z? which satisfy
the following additional boundary conditions: For all edges (u,v) of Z?, where u is
a vertex of G but v is not, we require f(u) = f(v). By checking the equation
CG(f|V(G)) =\ f|V(G), where C is the Laplacian matrix of G, we see that the

restriction to the vertices of G of an eigenfunction of the graph Z2, which satisfies
the condition above, is an eigenfunction of Cg, too.

We can allow one exceptional vertex r, so that G'\ 7 is a restriction of Z2. In this
case we require that f(z,y) = 0 for all (z,y) € Z? that have distance one to some
vertex of G \ 7 embedded in Z2. It is probably best to imagine r drawn as remarked
in Section 1 of Chapter 3, an example is given in Figure 2 in this section.
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As an algorithmic procedure for finding the eigenvectors is not available, we have
to rely on our intuition: Depending on the shape of G we may set f(x,y) = g(z)h(y)
for rectangular regions or f(z,y) = g(x + y)h(z — y) for diamond-shaped regions,
where ¢ and h are any of z — sin(ax) or z — cos(az). For more complicated
regions, we need to try sums of these functions.

EXAMPLE 4.1. Consider the [ x m grid P, & P,,. An example of this graph is
depicted in Figure 5 in Chapter 2, Section 2 on page 16. We set f(z,y) = g(x)h(y).
Let (Zpmin, Ymin) be the lower left corner of the graph, similarly, let (a2, Ymaz) be its
upper right corner. The boundary conditions force g to satisfy g(zmin—1) = g(Zmin)
and A (Ymin — 1) = h(Ymin), hence it will be best to set (Zmin, Ymin) to (%, %) and set
g(xz) = cos(az) and h(y) = cos(By). Furthermore, we have g(Zmaz) = 9(Tmaz + 1)

and A(Ymaz) = A(Ymaz + 1), where Zpap =1 — % and Ymaz = M — % We arrive at

T a2l re2) o
o - 3) oo o)) -

From this we obtain a = 7.71' and g = %ﬂ' for integers j and k. Summarizing, we get
eigenfunctions

TIx wky
fik(z,y) = cos T cos =,
where z runs from % to [ — % by integer steps and y from % to m — % by integer
steps, j € {0,1,...,l =1} and k € {0,1,...,m — 1}. The eigenvalue corresponding
to fjx is 4 — 2cos Tt — 2cos %k, which is zero for j = k = 0. Hence, the number of
spanning trees is

1 ] k
t(PlGBPm):m H (4—2<COST]+COSE>>.

G€{0,1,...,1—1}
ke{0,1,...,m—1}
(J,k)#(0,0)

Using the dual graph we can compute the number of spanning trees in a different
way: For the dual graph, the boundary conditions demand that g(zmin) = A(Ymin) =
0. Hence, it makes sense to put (Zmin,Ymin) = (0,0) and g(x) = sin(ax), h(y) =
sin(fy). Furthermore, it is required that g(zmez) = A(Ymaz) = 0, which results in
a= 7‘7r and g = £

. Therefore, the eigenvectors of (P, @ Py,)* are
' k
fik(z,y) = sin ilw sin %y’
where z runs from 0 to [ by integer steps and y from 0 to m by integer steps,
je{l,2,...,1—1} and k € {1,2,...,m — 1}. The eigenvalues are the same as

above. Hence, the number of spanning trees is

] k
t(P® Py, = H (4—2<COSWTJ+COS%>>.

je{1,2,..,1-1}
ke{1,2,...,m—1}
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FIGURE 2. A grid with an extra vertex

The equivalence of these two formulas follows from the well-known identity for [ =

Hé;ll (2 — 2cos ”TJ>

ExAMPLE 4.2. Consider the graph (P, @ Pp,)" resulting from P, & P, by at-
taching an extra vertex r which is joined to all vertices (Zmqz,y) and (%, Ymaz),
when (Zmaz, Ymaz) denotes the upper right vertex of P, @ P,,. Note that there are
two edges joining r and (Zmaz, Ymaz). An example is depicted in Figure 2. Again
we put f(z,y) = g(x)h(y). Let (Tmin,Ymin) denote the lower left corner of the
graph. Then the boundary conditions require that g(zmin) = g(zmin + 1) and
h(Ymin) = B(Ymin + 1), hence we set (Zpmin, Ymin) to (3, 3) and put g(z) = cos(az)
and h(y) = cos(By). Furthermore, we want g(Zmez + 1) = 0 and A(ymaz +1) =0,
where %00 =1 — % and Yar = M — % Therefore,

o (a(1+2)) =0
o s o) -

2j7+1
2m—+1

w(2j + 1)z cos w(2k+ 1)y
20+1 2m+1 7

: o 241 _
which results in @ = Z777 and 8 =

7. Putting the pieces together we get

fik(z,y) = cos

where z runs from % to [ + % by integer steps and y from % to m + % by integer

steps, j € {0,1,...,l —1} and k € {0,1,...,m — 1}. The eigenvalue corresponding
. 2j+1 2k+1

to fjr is 4 — 2cos 77r(2lj++l ) _ 9cos Wémil),

the number of spanning trees is

o B (25 + 1) m(2k + 1)
t(PoP,))= | H (4 2 <cos EFSE +oos = 1 :
5E{0,1,0l—1}

ke{0,1,...m—1}

which is zero for j = [ or kK = m. Hence,

Again it is also possible to compute the number of spanning trees using the dual
graph of (P, & P,,)".
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(xmina ymm)
FIGURE 3. The dual of ERy 3

ExampLE 4.3. The graph P,® P, consists of two components, known as the even
and odd Aztec rectangles. See Section 2 in Chapter 2 for an exact definition. In
Figures 10 and 11 on page 6 the two components of P; ® P are depicted. It seems to
be difficult to compute their eigenvalues directly, but it is easy to find the eigenvalues
of their duals. As the regions are diamond-shaped, we put f(z,y) = g(x+y)h(z—y).
First, consider the dual of the even Aztec diamond. We set (Zymin, Ymin) as indicated
in Figure 3 by a gray dot.

The boundary conditions require that the following equations are satisfied:

f(xmm + Ky Ymin + k) :g(xmin + Ymin + 2k)h($mm - ymin) =0
f(xmm — K, Ymin + k) :g(xmin + ymin)h(wmin — Ymin — Zk) =0
f(xmm —m+k, Ymin + m + k) :g(wmin + Ymin + 2k)
h(xmm — Ymin — Zm) =0
f(wmm +1 =k Ymin + 1+ k) :g(wmin + Ymin — 2l)
h(wmm — Ymin — Zk) =0,
where k is an appropriate integer.

When we set g(z) = sin(az) and h(z) = sin(6z), and (Zmin, Ymin) to (0,0), the
first two equations are satisfied. Furthermore, we want ¢(zmin + Ymin — 20) = 0 and
h(Zmin — Ymin + 2m) = 0. Therefore,

sin((20)) = 0 and
sin(B(~2m) =,

which results in a = %W and 8 = %ﬂ'. Putting the pieces together we get

| o
Fialay) = sin XD G THE Z0)
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(xmin , ymm)
FIGURE 4

The triangle T5 FIGURE 5
The dual of the triangle T5

where z € [-m,l] and y € [0,l +m], with 0 <z +y <2l and 0 <y —z < 2m. Note
that fjx(z,y) = fau—j2m—r(z,y). Hence, j runs from 1 to 2/ — 1 and % runs from 1

to m when j </, from 1 to m — 1 otherwise. The eigenvalue corresponding to f;

is 4 —4cos 2{ cos 21“ Hence, the number of spanning trees is

t(ER,m) = ‘ H (4 4 cos % cos W—Z) )
(k) €L, 20— 1] x [1,m—1]U[L,{] x {m}

For the odd Aztec rectangle, all of the above goes through unchanged, except
that = € [-m — 3,1+ 5] and y € [~3,0 +m + 3]. Furthermore, f;,, is no longer an
eigenvector, as it is the zero vector. Thus, for arbitrary [ and m, the even Aztec rec-
tangle has exactly 4 times as many spanning trees as the odd Aztec rectangle. This
can be also shown using the Q-spectrum of the graph, as in Section 2, Example 2.23.

EXAMPLE 4.4. Consider the triangular graph T,,, which is depicted in Figure 4
for m = 5. Again it seems to be difficult to compute its eigenvalues directly, but it
is possible to find the eigenvalues of its dual. Let (Zin, Ymin) the lower left corner
of T;% as indicated in Figure 5, and set (Zmaz, Ymaz) = (Tmin + My Ymin +m).

The boundary conditions force f to satisty f(z,ymin) = 0, f(Zmaz,y) = 0,
and f(xmzn + K, Ymin + k) = 0. We set (xmimymin) to (070) and put f(x,y) =
g1(z)h1(y) + g2(x)h2(y). The first condition suggests that hi(y) = sin(ay) and

ho(y) = sin(fy), the second suggests ¢ (z ) = sin 72 and go(z) = 51n7r—k. Now
f(z,z) = 0 requires that a = %k and = —"1 We therefore obtain
' k k
fik(x,y) = sin U sin ~ y_ sin x sin ﬂ
m m m m

where 0 < y <z< m and 0 < 7 < k < m. The eigenvalue corresponding to f; is
4 —2cos =L —2cos TL. Hence, the number of spanning trees is

t(T,,) = H <4—2cos%—2cos%k> .

0<j<k<m
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