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CHAPTER 1IntroductionA graph consists of edges connecting vertices. A tree is a connected graphcontaining no cycles. A spanning tree is a subgraph of a graph that contains allits vertices and is itself a tree. It is the aim of this text to present various methodscounting the number of spanning trees in special families of graphs as depictedbelow. The following table lists some families of graphs together with references tothe sections where we calculate their number of spanning trees.The material is organized as follows: In the second chapter, we give de�nitionsand prove some very basic results of graph theory, which will be needed throughoutthe rest of the text.Furthermore, many operations of graphs are presented which allow the compo-sition of larger graphs from smaller ones, or transform complicated structures intoless complicated. Especially in Chapter 5, Section 2 we will present formulas thatcalculate the spanning trees of a graph which can be obtained from smaller ones bysome operation, if enough is known about the structure of the smaller graphs.The third chapter is devoted to some other mathematical objects, which can beshown to be intimately related to the spanning trees of a graph. For example, givenany planar graph G , i.e. a graph which can be drawn in the plane, we can constructanother graph that has as many perfect matchings { spanning subgraphs in whichevery vertex is connected to exactly one other vertex { as G has spanning trees.The last two chapters contain the main part of the text. In Chapter 4, we presentsome purely combinatorial methods. Although some of them are quite aesthetic,their application is limited to very few, special families of graphs.Using the more algebraic methods of the last chapter { heavily relying on thefamous Matrix-Tree-Theorem{ we can compute the spanning tree number of manygraphs in a very straightforward manner.We will make use of the following notations: Given a subset S of a set S we willwrite Sc for the complement of S in S. The entry in row i and column j of a matrixM will be denoted by Mi;j. Similarly, MR;C denotes the restriction of M to therows indexed by R and the columns indexed by C. If M is a square matrix we willonly writeME for the minor of M given by the rows and columns indexed by R. InTable 1 of Chapter 2, Section 1 some more notational conventions are listed.
3



1. INTRODUCTION 4Name Notation ReferencesComplete graph Kp Chapter 4, Corollary 3.2, page 42Chapter 5, Example 2.17, page 73Complete multipartite graph Kp1;p2;:::;pn Chapter 4, Example 3.10, page 50Chapter 5, Example 2.9, page 67Circle Cn Chapter 5, Lemma 2.10, page 69Ladder Ln Chapter 4, Example 1.1, page 34,Chapter 5, Example 2.19, page 74Chapter 5, Example 4.1, page 81Cyclic Ladder K2 �Cn Chapter 4, Example 2.2, page 40M�obius Ladder Mn Chapter 4, Example 2.3, page 41Square of a Circle C2n Chapter 4, Example 2.4, page 41Fan Fn Chapter 4, Example 1.2, page 35,Chapter 4, Example 3.15, page 52Chapter 5, Example 2.11, page 70Wheel Wn Chapter 4, Example 1.3, page 35,Chapter 4, Example 3.16, page 52Chapter 5, Example 2.12, page 70Even and Odd Aztec Rectangle ERm;n; ORm;n Chapter 3, Remark 5, page 33,Chapter 5, Example 2.23, page 78Chapter 5, Example 4.3, page 83Table 1. Some special families of graphs
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Figure 1The complete graph K5
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Figure 3The wheel W5
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Figure 4The fan F5
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Figure 5The circle C5
b

bb

bb

bb

bb

bb

bb

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure 6The square of a circle C27
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Figure 7The ladder L5
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Figure 10The even Aztec rectangleER5;3
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Figure 11The odd Aztec rectangleOR5;3



CHAPTER 2Preliminaries1. Basic Graph TheoryIn this section we will de�ne what a graph is, and give de�nitions for the mostimportant concepts in graph theory. As examples, we will use the graphs depictedin Figures 1 and 2 below.Definition 1.1. A directed graph, abbreviated digraph, G consists of a set of digraphgraphincidencehead, tailadjacencyloopparallel edgesweighted(di)graphunderlyinggraphorientation of agraph
vertices V(G) and a set of arcs E(G). Every arc (u; v) joins two { possibly identical{ vertices u and v. We say (u; v) is incident from u and incident to v, to indicatethe direction of the arc. Alternatively, we will call u the tail and v the head of (u; v).Arcs of the form (u; u) are called loops. If there are two or more arcs incident froma vertex u and incident to a vertex v, these arcs are called parallel to each other.An undirected graph, for short graph, is a digraph with symmetric incidencerelation: if (u; v) is in the arc-set of G, then also (v; u). Hence, we call such a pairof arcs an edge incident to u and v. In the following we will use the term `edge' forboth edges and arcs.Two vertices joined by an edge are called adjacent.A weighted (di)graph is a (di)graph together with a weight-function on its edgesw : E(G)! R. The weight of a graph is the product of the weight of its edges. Wewill identify an unweighted (di)graph with a weighted (di)graph by giving each edgeweight one.We will usually denote the number of vertices by p and the (weighted) numberof edges by q.The underlying graph of a digraph G has the same vertex-set as G, and everyarc of G is replaced by an edge connecting the same vertices as the arc.An orientation of a graph G is a digraph ~G, so that the underlying graph of ~Gis equal to G.Example. The (unweighted) digraph ~G shown in Figure 1 has vertex set V( ~G) =fr; u; v; wg and edge set E( ~G) = f(u; v); (v; u); (r; u); (v; r); (r; r)g. Hence p = 4 andq = 5. It has a loop attached to vertex r, but no parallel edges.Its underlying graph ~G is depicted in Figure 2. Note that in ~G, the two edgesjoining vertices u and v are parallel.Definition 1.2. The neighbourhood NG(v) of a vertex is the set of vertices neighbourhoodsuccessorspredecessorsdegreeindegreeoutdegreeadjacent to it.The degree dG(v) of a vertex v in a graph G is the number of edges incident tov, where loops are counted twice. In weighted graphs the degree of a vertex is thesum of the weights of the edges incident to v.7
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Figure 2The underlying graph G ofthe digraph in Figure 2Notation MeaningV(G), p set and number of vertices of GE(G), q set and (weigthed) number of edges of GNG(v), NoG(v), NiG(v) neighbourhood, successors and predecessors of vertex v in GdG(v), doG(v), diG(v) (weighted) degree, out- and indegree of vertex v in GT(G), t(G) set and number of spanning trees of GFR(G), fR(G) set and number of spanning forests of G with roots in RH � G H is a subgraph of GC(G), c(G) set and number of components of GTable 1. Some graph theoretic notationsIn a digraph the set of successors (predecessors) NoG(v) (NiG(v) is the set ofvertices succeeding (preceding) a given vertex.The indegree diG(v) (outdegree doG(v)) of a vertex v in a digraph G is the numberof arcs incident to (incident from) v. Directed loops are counted once. Again, inweighted digraphs the indegree (outdegree) of a vertex is the sum of the weights ofthe arcs incident to (incident from) to v. For undirected graphs it will be convenientto put diG(v) = doG(v) = dG(v).Definition 1.3. Let G be any (weighted) (di)graph. Then its adjacency ma- adjacencymatrixdegree matrixKirchho�matrixLaplaciantrix A has rows and columns indexed by the vertices of G and entries au;v =Pe=(u;v)2E(G) w(e) for u; v 2 V(G), where w : E(G)! R denotes the weight functionon G.The degree matrix D of a (weighted) (di)graph G has nonzero entries only alongits main diagonal. For any vertex v 2 V(G) they are de�ned bydv;v = (diG(v) for digraphsdG(v) for graphs:The Kirchho� matrix or Laplacian of a graph G is de�ned as C = D�A.



1. BASIC GRAPH THEORY 9Remark. Note that the indegrees of a digraph are given by the column sumsof its adjacency matrix. Similarly, the outdegree of a particular vertex is the sumof all entries of the row it is in. Of course, we could also have de�ned the degreematrix of a digraph using the outdegree of its vertices.Definition 1.4. The weight matrix X of a weighted (di)graph G is indexed by weight matrixthe edges of G and has nonzero entries only along its main diagonal: xe;e is theweight of the edge e. If G is not weighted, X is the identity matrix.Definition 1.5. Let G be a (loopless) digraph. Then its incidence matrix B incidencematrixhas rows indexed by the vertices of G and columns indexed by the arcs of G. Theentry corresponding to vertex u and arc e is de�ned to bebu;e = 8><>:�1 e = (u; v)+1 e = (v; u)0 otherwise:Remark. By de�nition, B has exactly one positive and one negative entry ineach column. The number of positive (negative) entries in each row equals theindegree (outdegree) of the corresponding vertex.Proposition 1.6. Let G be a loopless (weighted) graph. Let B be the incidencematrix of an arbitrary orientation of G. Let X be the weight matrix of G. Then wehave C = B �X �Bt;where C is the Kirchho� matrix of G.For an arbitrary (weighted) digraph let B be the matrix obtained from its inci-dence matrix B by replacing all negative entries with zeros. ThenC = B �X �Bt:Proof. Clearly, (B �X �Bt)(u;v) = Xe2E(G) bu;e � xe;e � bv;e:Furthermore we havebu;e � bv;e = 8><>:+1 if u = v and e is incident to u�1 if e = (u; v) or e = (v; u)0 otherwise;which yields the desired result.Analogously, for digraphs we have(B �X �Bt)(u;v) = Xe2E(G) bu;e � xe;e � bv;e;



1. BASIC GRAPH THEORY 10and bu;e � bv;e = 8><>:+1 if u = v and e is incident to u�1 if e = (u; v)0 otherwise:Remark. F. R. K. Chung and R. P. Langlands de�ned in [13] the weight of avertex and edge weighted (di)graph G asw(G) = Y(u;v)2E(G)w(u)w(u; v);where the weight of vertex u is w(u). Accordingly, the in-degree of a vertex is de�nedas diG(v) = X(u;v)2E(G)w(u)w(u; v);and the adjacency matrix as A withau;v = Xe=(u;v)2E(G)w(e)pw(u)w(v):We will see in Chapter 5, Section 1 that this de�nition enables us to derive a gen-eralized version of the famous Matrix-Tree-Theorem.Definition 1.7. A graph is called Eulerian, if all vertices have even degree, a Eulerian,regular,bipartite,semiregulargraph(weighted) digraph is called Eulerian, if in all vertices in- and outdegree coincide.A (di)graph is r-regular if all of its vertices have (in)degree r.A graph is bipartite, if it is possible two separate its vertex set in two parts, sothat edges join only vertices belonging to di�erent parts.A graph is semiregular of degrees r1 and r2 if it is bipartite and all vertices ofone part have degree r1, all vertices of the other part have degree r2.Lemma 1.8. For any (weighted) digraph G we haveXv2V(G) diG(v) = Xv2V(G) doG(v) = q;where q is the (weighted) number of edges. For (weighted) graphs we haveXv2V(G) dG(v) = 2q:Again, q is the (weighted) number of edges.Proof. This is because the arcs are in one to one correspondence to the vertices:In the �rst sum an arc corresponds to the vertex it is incident to, in the second tothe vertex it is incident from. In a graph, every edge is counted exactly twice: Eitherit is incident to two vertices or it is a loop.



1. BASIC GRAPH THEORY 11Definition 1.9. Given a (di)graph G, a chain is a sequence of vertices and (closed) chainwalkpathcircuitcycleEulerian touredges of the form (v1; e1; v2; e2; : : : ; en�1; vn), with fv1; v2; : : : ; vng � V(G) and withfe1; e2; : : : ; en�1g � E(G), so that ei joins vi and vi+1 for i 2 f1; 2; : : : ; n� 1g. Notethat we do not pay attention to the direction of the arcs here. Furthermore, it ispossible that some vertices or edges occur more than once. If v1 = vn the chain issaid to be closed.Two closed chains are considered equal, if the succession of arcs is the same inboth chains { we consider e1 to be a successor of en.A walk in a digraph is a chain with arcs of the form ei = (vi; vi+1) 2 E(G) only.For graphs we use walk as a synonym for chain.A walk with all vertices distinct is called a path. In this case the edges are alldistinct, too.A circuit is a closed walk, a cycle is a closed path that contains at least one edge.Note that contrary to a circuit, a cycle cannot contain another cycle as a propersubset.An Eulerian tour is a circuit containing every edge of G exactly once.
b bb bb bb bFigure 3. The path P5Remark. The path Pn depicted above and the circle Cn (see Figure 5 in theintroduction) are probably the two most basic graphs. Many other families of graphswill be de�ned in terms of the path and the circle.Definition 1.10. A (di)graph is connected if any two vertices can be joined by connectedstronglyconnectedunilaterallyconnecteda chain. It is strongly connected if any two vertices can be joined by a path. It isunilaterally connected if for any two vertices u and v there is either a path from uto v or a path from v to u.Remark. In graphs the terms connected and strongly connected coincide.Definition 1.11. A subgraph H of a (di)graph G is a (di)graph with edge-set subgraphvertex-inducededge-inducedgraph,restrictionE(H) � E(G) and vertex-set V(H) � V(G). A subgraph is spanning if it has thesame vertex-set as the original (di)graph.For a set of vertices V � V(G) the vertex-induced subgraph of a (di)graph G hasvertex-set V and maximal edge-set A � E(G). In other words, an arc of G is in theinduced subgraph if and only if both vertices it connects are in V . It is also calledrestriction of G to V and will be denoted by GjVFor a set of edges E � E(G) the edge-induced subgraph of a (di)graph G hasedge-set E and minimal vertex-set V � V(G). Hence a vertex is in the inducedsubgraph if and only if it is incident to or from some arc in E. This subgraph is alsoknown as the restriction of G to E and is denoted by GjE.Remark. Digraphs are never considered as subgraphs of a graph.



1. BASIC GRAPH THEORY 12Definition 1.12. A component of a (di)graph is a maximal connected vertex- componentbridgeinduced subgraph.A bridge is an edge of a (di)graph whose removal increases the number of com-ponents.Remark. Sometimes maximal strongly connected vertex-induced subgraphs areconsidered. For our purposes, however, we do not need this concept.Definition 1.13. A graph T is a tree if one of the following equivalent condi- treearborescenceforestrootsleavestions hold:� T is connected and contains no cycles.� T is connected and the number of edges is the number of vertices less one.� Any two vertices of T are joined by a unique path.One vertex can be chosen to be a root, we then speak of a rooted tree.A digraph T is an arborescence or out-tree, if its underlying graph is a rootedtree and for every vertex v there is a unique path from the root to v. Similarly, wecall a digraph T an in-tree, if its underlying graph is a rooted tree and for everyvertex v there is a unique path from v to the root.In the following we will use the term tree for both trees and arborescences.A (di)graph F is a forest if each of its components is a (rooted) tree (an arbores-cence).Vertices of a forest with degree one (outdegree zero), not roots, are called leaves.Proof of equivalence. The existence of two di�erent paths joining any twovertices of T is equivalent to the existence of a cycle in T , because the concatenationof two di�erent paths is a cycle and, conversely, in a cycle there are always twodi�erent paths joining distinct vertices.Suppose that T is connected and contains no cycles. Then there must be avertex with degree one. Deleting this vertex and its incident edge we obtain a graphwhich is still connected and does not contain a cycle, but has fewer vertices. Hencewe can repeat this procedure, until we obtain the graph consisting of an isolatedvertex, which is the only connected graph without edges. In every step we deletedone vertex and one edge, hence, after deleting all vertices but one, there is no edgeleft. Therefore, in a tree the number of edges is the number of vertices less one.Now suppose that T is connected and q = p�1, where p is the number of verticesof T and q is the number of edges of T . Then T contains a spanning subgraph T 0which contains no cycles and has p0 = p vertices and q0 � q edges. By the hypothesisand the preceding argument we have q = p � 1 = p0 � 1 = q0, i.e., T 0 contains asmany edges as T , which implies that T 0 = T . Therefore, T contains no cycles.Remark. Given any graph, we are interested in the number of spanning trees itcontains as subgraphs. Note that in digraphs, the number of spanning trees rooted ata particular vertex is generally not the same as the number of spanning trees rootedat a di�erent vertex. Therefore, we will write tr(G) for the number of spanning treesof G rooted at vertex r.In graphs, of course, the number of spanning trees does not depend on the rootchosen. We will show in Chapter 3, Section 3 and in Chapter 5, Section 1, that this



2. OPERATIONS ON GRAPHS 13is also true for Eulerian digraphs. Therefore, we will often refer to the number ofspanning trees of a graph or Eulerian digraph G as t(G).Corollary 1.14. In an unweighted tree T we haveXv2T(dT (v)� 1) = p� 2;where p is the number of vertices of T . More generally, if we consider T as a bipartiteunweighted graph with parts T1 and T2 with p1 and p2 vertices respectively, we haveXv2T1(dT (v)� 1) = p2 � 1and the obvious counterpart for T2. Analogously, in an unweighted forest F we haveXv2F1(dF (v)� 1) = p2 � c(F ):Proof. Take T to be rooted at an arbitrary vertex v 2 T1. Then vertices witheven distance to v must be in T1, those with odd distance to v are in T2. Think of Tas a directed graph with all edges directed away from the root. Then the outdegreeof any vertex u 2 T1 simply counts the number of vertices in the other part withpredecessor u. Clearly, every vertex in T2 has exactly one predecessor. Summing upover all vertices in T1 we get Xu2T1 doT (v) = p2:But clearly, the outdegree of the root is just its degree in T and the outdegree of anyother vertex is its degree in T minus one. Now the result follows by substituting inthe sum above.Definition 1.15. A cutset of a graph G is a set of edges whose removal from G cutsetcocyclecotreeincreases the number of components of G. A cocycle is a minimal cutset. A cotreeC of a graph G is a subgraph of G, so that GjE(C)c is a spanning tree of G.2. Operations on GraphsBelow some operations on graphs are de�ned in terms of their Laplacian ma-trices. (See De�nition 1.3) Furthermore, we will explain each operation by givinga description of the set of vertices V and the set of edges E of the resulting graph.Note, however, that these descriptions often apply only to simple, undirected graphswithout loops or multiple edges.Furthermore we de�ne some families of graphs, also those depicted in the intro-duction.Definition 2.1. For (weighted) (di)graphs G and H with identical vertex sets union, productV(G) = V(H) we de�ne their union G+H and their product G �H as follows: Theedge set of the union is E(G) [ E(H), the edge set of the product isf(u;w) : (u; v) 2 E(G) and (v; w) 2 E(H)g:



2. OPERATIONS ON GRAPHS 14Name Notation ReferenceUnion G+HProduct G �HDirect Sum GuH Chapter 5, Lemma 2.8, page 66Complement G Chapter 5, Lemma 2.8, page 66Complete Product G5H Chapter 5, Lemma 2.8, page 66Kronecker sum G�H Chapter 5, Theorem 2.18, page 73Kronecker product G
H Chapter 5, Theorem 2.18, page 73Lexicographic Product G [H1; H2; : : : ; Hp] Chapter 4, Theorem 3.5, page 46Line Graph L(G) Chapter 5, Proposition 2.16, page 72Subgraph Deletion(H � G) G nHContraction(E � E(G) or V � V(G)) G�E , G�V Chapter 4, Section 1, page 34Restriction(E � E(G) or V � V(G)) GjE , GjV Chapter 4, Section 1, page 34Table 2. Some operations on graphsIn terms of the Laplacian matrices of G and H we haveCG+H = CG +CH andCG�H = CG �CH :Example 2.2. The square of a circle C2n, see Figure 6 in the introduction, canbe de�ned { nomen est omen { as Cn � Cn.Definition 2.3. The direct sum G u H of G and H is obtained by `drawing' direct sumthe two (weighted) (di)graphs side by side:V(GuH) = V(G) [ V(H) andE(GuH) = E(G) [ E(H):In terms of the Laplacian matrices of G and H we haveCGuH = �CG 00 CH� :Example 2.4. A graph for rather technical purposes is the graph On, which isthe direct sum of n isolated vertices.Definition 2.5. The complement G of a (weighted) (di)graph can be de�ned complementby CG = pI� J�CG;where J is the matrix which has all entries equal to one.For a simple graph G, i.e., a graph without multiple edges (arcs) or loops, G isthe graph with the same vertex set as G and edge set E(Kp) n E(G):G = Kpj(E(G))c :
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Figure 4. The star S5Example 2.6. The complete graph Kn, see Figure 1 in the introduction, is thegraph on n vertices, where every pair of distinct vertices is connected by exactly oneedge. It can be also de�ned as the complement of the graph On.Definition 2.7. The complete product G5H of (weighted) (di)graphs G and completeproductH is obtained from the direct sum of G and H by additionally joining every vertexof G with every vertex of H. HenceE(G5H) = E(G) [ E(H) [ f(u; v) : u 2 V(G) and v 2 V(H)gIn terms of the Laplacian matrices of G and H we haveCG5H = �AG JJ AH� = CGuH :Example 2.8. The complete product enables us to de�ne many important fam-ilies of graphs: The complete bipartite Kn;m, see Figure 2 in the introduction, or,more generally, the complete multipartite graph Kn1;n2;:::;nm can be de�ned as thecomplete product of the graphs On1 , On2 , : : : Onm : Kn1;n2;:::;nm = 5mk=1Onk .The fan Fn, see Figure 4 in the introduction, can be de�ned asK15Pn. Similarly,the wheel Wn, see Figure 3 can be de�ned as K1 5 Cn.Another important graph, the star Sn, see Figure 4 above, is the complete prod-uct of a single vertex with the graph On consisting of n isolated vertices.Definition 2.9. The Kronecker product G
H and the Kronecker sum G�H KroneckerproductKronecker sumof (weighted) (di)graphs G and H have as vertex sets the cartesian product V(G)�V(H) of the vertex sets of G and H. We will denote the vertex in V(G) � V(H)corresponding to the vertices u 2 V(G) and v 2 V(G) by uv.In terms of the Laplacian matrices of G and H we can de�neCG
H = CG 
CH andCG�H = CG 
 I+ I
CH :
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Figure 5. The grid graph P5 � P4If G and H are (di)graphs without parallel edges, the set of edges of the Kron-ecker product E(G
H) isf(ux; vy) : (u; v) 2 E(G) and (x; y) 2 E(H)g;and the set of edges of the Kronecker sum E(G�H) isf(ux; vy) : �u = v and (x; y) 2 E(H)� or �x = y and (u; v) 2 E(G)�g:The preceding two operations are special cases of the so called NEPS of graphs, NEPSwhich is short for non-complete extended p-sum, a term coined by Cvetkovi�c, see [15]:The NEPS G with basis B of (weighted) (di)graphs G1, G2, : : : , Gp has as its vertexset the cartesian product of the vertex sets of G1, G2, : : : , Gp.In terms of the Laplacian matrices of the graphs G1, G2, : : : , Gp we haveCG = X�2BA�11 
 � � � 
A�pp :Therefore, if G1, G2, : : : , Gp are (di)graphs without parallel edges, two vertices(u1; u2; : : : ; up) and (v1; v2; : : : ; vp) of the NEPS G are connected if and only if thereis a � 2 B so that ui = vi if �i = 0, and (ui; vi) 2 E(Gi) if �i = 1, for alli 2 f1; 2; : : : ; pg.The Kronecker sum is equivalent to the NEPS with basis f(1; 0); (0; 1)g, theKronecker product to the NEPS with basis f(1; 1)g.Example 2.10. It is a remarkable fact that the Kronecker product of two con-nected graphs need not be connected. In fact, if the graphs are both bipartite, theirKronecker product has always two components, see also Theorem 2.21 in Chapter 5.The even and odd Aztec rectangles ERn;m and ORn;m depicted in Figures 10and 11 in the introduction, are the two components of the Kronecker product of twopaths Pn and Pm. ERn;m is the component of Pn 
 Pm which has an even numberof vertices, ORn;m has an odd number of vertices.Clearly, the Kronecker sum of connected graphs is always connected. The ladderLn, see Figure 7 in the introduction, is the Kronecker sum of K2 and the path Pn.More generally, the grid graph is the Kronecker sum of two paths Pn and Pm, seeFigure 5 above.



2. OPERATIONS ON GRAPHS 17Definition 2.11. The lexicographic product, also called local join is de�ned for lexicographicproductlocal joina (weighted) (di)graph G and (weighted) (di)graphs H1, H2, : : : , Hp and is denotedby G [H1;H2; : : : ;Hp].If G is a (di)graph without parallel edges, we construct G [H1;H2; : : : ;Hp] asfollows: Replace in a graph G on p vertices vertex v by the graph Hv, where v 2f1; 2; : : : ; pg, then join all vertices of Hu and Hv, whenever (u; v) 2 E(G). We willdenote vertex i in the subgraphHu by ui. Hence, the vertex set of G [H1;H2; : : : ;Hp]is Spv=1 V(Hv) and its edge set isf(ux; vy) : (u; v) 2 E(G) or �u = v and (x; y) 2 E(Hu)�g:For general (weighted) (di)graphs G and H1, H2, : : : , Hp, we de�neAG [H1;H2;:::;Hp] = �(AG)u;vJpu�pv�u;v2V(G) +0B@AH1 . . . AHp1CA ;where pv is the number of vertices of the graph Hv. The degree of a vertex ui isdG [H1;H2;:::;Hp](ui) = X(u;v)2E(G) pv + dHv(i):Note that the lexicographic product Kp [H1;H2; : : : ;Hp] is equivalent to thecomplete product of the graphs H1, H2, : : : , Hp.Definition 2.12. The line graph L(G) of a graph G has as vertex set the set of line graphedges of G. Two vertices of L(G) are joined, if they are incident in G. Hence:V(L(G)) = E(G) andE(L(G)) = f(ux; uy) : u; x; y 2 V(G)g:The adjacency matrix of the line graph of a graph G can be expressed in terms ofthe incidence matrix B of G: AL(G) = BtGBG � 2I:Definition 2.13. A subgraph H � G is deleted from G by deleting all edges subgraphdeletionand vertices of H and all edges which were incident to some vertex in H. HenceV(G nH) = V(G) n V(H) andE(G nH) = E(G) n f(u; v) : u 2 V(H) or v 2 V(H)g:The restriction GjE (GjV ) of a graph G to a set of edges E � E(G) (vertices restrictionV � V(G)) is synonymous to the edge (vertex)-induced subgraph of G induced byE (respectively V ) and was already explained in Section 1, De�nition 1.11.The contraction G�E of a graph G to a set of edges E � E(G) has as vertex contractionset all the vertices of G which are not incident to an edge of Ec together with onevertex for each component in GjEc. Two vertices in G�E are connected by as manyedges as there are edges connecting the corresponding sets in G.The contraction G�V of a graph G to a set of vertices V � V(G) has as vertexset V plus an additional vertex r, which represents the vertices in V c. Two verticesin V are connected by as many edges as there are edges connecting them in V , a



2. OPERATIONS ON GRAPHS 18vertex v 2 V is connected to r by as many edges as there are in G connecting v withsome vertex in V c. Finally, the vertex r has as many loops as there are edges in Gconnecting vertices within V c.



CHAPTER 3Equivalent ObjectsIn this chapter we will show that there are many combinatorial objects whichare intimately related to the spanning trees of a graph. Among those there are wellknown objects as Eulerian tours, spanning forests and perfect matchings. We willalso deal with duality in graphs and the so-called Abelian avalanche model, alsoknown as chip-�ring game, de�ned on a graph.Note that there is even a connection to algebraic topology, although we cannotcover this here: It is possible to associate certain graphs G with 3-manifolds, so thatthe order of their �rst homology group is equal to the number of spanning trees. [30]1. DualityDuality of graphs is a concept which appears in many areas of combinatorialgraph theory. It is also of signi�cance to the problem of counting spanning treesof undirected, unweighted graphs. For giving an exact de�nition, we need someprerequisites:The following very important concept will accompany us throughout most of thesections:Definition 1.1. An embedding of a (di)graph on a surface S is an injective embeddingfaceplanar graphdual graphfunction i that maps each vertex v onto a point i(v) on the surface and every edge(u; v) onto a path with endpoints i(u) and i(v). It is required that no two paths crosseach other, they may only touch in their endpoints. Furthermore, each componentof S n i(G) has to be homeomorphic to an open disc. In the following we will identifythe paths on the surface with the corresponding edges of the graph and the endpointsof the paths with the corresponding vertices. Note that a graph usually has manyembeddings on one surface.A face of a (di)graph embedded on a surface S by a function i : G ! S is acomponent of S n i(G). By Euler's formula we have�(S) = p� q + f;where �(S) is the Euler characteristic of S, p is the number of vertices, q is thenumber of edges and f is the number of faces of G.A (di)graph is called planar if it has an embedding onto the plane or, equiva-lently, onto the sphere. In planar graphs we have p� q + f = 2.The dual graph G� of an undirected planar graph with respect to some embed-ding has the same edge set as G and a vertex for each face of G, where an edgeconnects the faces it bounds. 19



2. CHIP-FIRING GAMES ON GRAPHS 20Remark. Let G be a graph embedded on the plane. When drawing the dual ofG, it is often easier to draw the vertex corresponding to the unbounded face of G asa circle, which surrounds the other vertices of G�. An example is given in Figure 1of Section 5 on page 32.Theorem 1.2. Let G be an undirected, unweighted planar graph G and let G�be its dual. Then the edges of each cotree of G form a spanning tree of G� and viceversa. Hence, t(G) = t(G�).Proof. A cotree of G has q� p+1 edges, by Euler's formula, this equals f � 1.Hence we only have to show that the edges of a cotree of G do not contain a cyclein G�. But this is impossible, because by the Jordan-Curve-Theorem such a cyclewould divide the sphere into two components, where both would contain a faceof G�, i.e., a vertex of G. Any path in the spanning tree of G joining these twovertices would have to cross the cycle, i.e., contain an edge of the cotree. This is acontradiction.Hence, when trying to determine the number of spanning trees of a given graph,it often makes sense to consider its dual. If the number of vertices of a planar graphis larger than its number of faces, its dual is smaller and therefore more accessibleto numerical methods.2. Chip-Firing Games on GraphsIn this section we present a (solitary) game played on a graph G known as `chip�ring game' or `avalanche model'. We will de�ne certain `recurrent' con�gurationsof this game and show, that the number of these con�gurations coincides with thenumber of spanning trees of G. Most proofs are taken from [4], [5] and [18].Definition 2.1. A chip-�ring game can be de�ned on a (di)graph G with pos- chip-�ring gamedissipation andload at a vertex,con�guration ofthe gameitive edge weights. It depends on non-negative values sv, lv and qv de�ned on everyvertex v of G. The diagonal matrix S with Sv;v = sv is called the dissipation matrix,the vector l = (lv)v2V(G) is called a load vector. A vector q = (qv)v2V(G) is called acon�guration of the game.Given a con�guration q, a vertex v is stable, if qv < dG(v) + sv (in digraphs (un)stablevertexqv < diG(v) + sv). Otherwise, v is unstable.Accordingly, a con�guration q is stable, if all vertices are stable. The set ofstable con�gurations will be denoted by S(G).The basic action in this game is the �ring of an unstable vertex of the graph: Let �ring of avertexq be an unstable con�guration. For an unstable vertex v we de�ne the con�gurationq0 after the �ring of v as follows: q0u = qu+w(u; v) for vertices u 6= v, where w is theweight function of G, and q0v = qv � dG(v) � sv (in digraphs q0v = qv � diG(v)� sv).In other words, the vertex v which is �red passes the amount of w(u; v) to everyvertex u of its neighbourhood NG(v) (in digraphs, to every vertex u of its set ofpredecessors NiG(v)). The �ring vertex itself looses the amount it distributes andadditionally its dissipation sv. Stable vertices cannot be �red.More generally, a sequence of vertices V = (v1; v2; : : : ; vn) is called a legal se- legal sequencesrepresentativevectortransitionmatrixquence for the con�guration q, if, starting at this con�guration, the vertices can be



2. CHIP-FIRING GAMES ON GRAPHS 21�red in this order. The representative vector of V is the vector v, where v(v) is thenumber of occurrences of the vertex v in V .The con�guration q0 after the �ring of a legal sequence V is given byq0 = q��v;(+)where � = C + S, with C the Kirchho� matrix of G. We call � the transitionmatrix of the game.We call a game weakly dissipative, if for every non-dissipative vertex v, i.e., a (non-)dissipativevertex, weaklydissipativegamevertex v with sv = 0, there is a path from a dissipative vertex u, i.e., a vertex u withsu > 0.Lemma 2.2. In a weakly dissipative game, given a vector q with non-negativecomponents, there is a vector q0 with non-negative components so that�q0 = q:(�)In particular, the matrix � is nonsingular.Proof. We will construct a sequence of approximate solutions that convergestowards a solution of Equation (�).Let q0 = 0. Given qn for n � 0, let vn be a vertex of G, so that (q��qn)vn ismaximal. Let �n(v) = ( (q��qn)vn�vn;vn for v = vn0 otherwise.We then de�ne qn+1 = qn + �n. We now show that the sequence (qn)n�0 convergestowards a solution q0 of Equation (�).We have de�ned qn+1 so that (q��qn+1)vn vanishes. Furthermore, for v 6= vnwe have (q��qn+1)v = (q��qn ���n)v(��) = (q��qn)v + w(v; vn)(q ��qn)vn�vn;vn :Therefore, we inductively see that all components of q��qn are non-negative.For two vectors q and q0 we de�ne a distance d(q;q0) =Pv2V(G) j(q� q0)vj. Wehave to show that d(q;�qn) tends to zero as n approaches in�nity. We can expressthe distance between q and �qn+1 asd(q;�qn+1) = Xv2V(G) j(q��qn+1)v j= Xv2V(G)(q��qn ���n)v= d(q;�qn)� svn (q��qn)vn�vn;vn :Because vn was chosen so that (q��qn)vn is maximal, we haved(q;�qn) = Xv2V(G)(q��qn)v � p (q��qn)vn ;(� � �)



2. CHIP-FIRING GAMES ON GRAPHS 22where, as always, p is the number of vertices of G. Thus we obtain the estimated(q;�qn+1) � d(q;�qn)�1� svnp�vn;vn� :If vn is a non-dissipative vertex, d(q;�qn+1) = d(q;�qn). For dissipative ver-tices, however, we have0 < �1� svnp�vn;vn� < 0@1� minv2V(G)sv>0 svp�v;v1A < 1:Note that � = 1�minv2V(G)sv>0 svp�v;v is independent of n. We now have to distinguishbetween two possible cases: If there is an in�nite subsequence (vmn)n�0 of (vn)n�0,so that vmn is dissipative for all n, we have d(q;�qn) � �nd(q;�qm0 ). Thusd(q;�qmn ) tends to zero as n approaches in�nity, which is what we wanted toshow.Suppose that this is not the case and that there is an m0 so that all vertices vnwith n � m0 are non-dissipative. We show, that in this case d(q;�qm0 ) must bezero.Let u be a non-dissipative vertex. Because the game is weakly dissipative, u hasa predecessor. Let u0 be a predecessor of u.For each n > m0 with vn = u, we have because of Equation ��(q��qn+1)u0 = (q��qn)u0 + w(u0; u)(q ��qn)u�u;uand because of Inequality (� � �)(q��qn+1)u0 � (q��qn)u0 + w(u0; u)d(q;�qn)p�u;u :We assumed that for n � m0 all vertices vn are non-dissipative, therefore(q��qn+1)u0 � (q��qn)u0 + mine2E(G)w(e) d(q;�qm0)p maxv2V(G)�v;v :Recall that all the weights are positive. Hence, if d(q;�qm0) > 0, the sequence�(q��qn)u0�n�m0 tends to in�nity. Because of(q��qn)u0 = d(q;�qn)�Xv 6=u0(q��qn)v � d(q;�qn)this is absurd and d(q;�qm0 ) must be equal to zero.Lemma 2.3. If G is weakly dissipative, then every con�guration passes over intoa stable con�guration after a �nite number of �rings.Proof. Throughout the �rings, the total amount held at the vertices cannotexceed its initial value. In particular, there is an upper bound on the amount heldat any vertex.



2. CHIP-FIRING GAMES ON GRAPHS 23Suppose there is an in�nitely long sequence of �rings. Then, since the numberof vertices is �nite, there is a vertex v which is �red in�nitely often. This cannot bea dissipative vertex, because then the game would loose the amount sv > 0 at every�ring of v, but the total amount of the game is �nite.Suppose that v is a non-dissipative vertex. Since G is weakly dissipative, there isa path from a dissipative vertex r to v. Since v is �red in�nitely often, its predecessorv0 on the path to r receives an in�nite amount. Therefore, as the amount held atany vertex is bounded, v0 must be �red in�nitely often as well.Inductively, we see that each of the vertices of the path, including r must be�red in�nitely often. This is a contradiction.Definition 2.4. A sequence of �rings V = (v1; v2; : : : ; vk), vi 2 V(G) for i 2 avalanchef1; 2; : : : ; kg, that transforms an unstable con�guration q into a stable con�gurationis called an avalanche starting at q.We will show, that all avalanches starting at a given con�guration q, terminateat the same stable con�guration q0. This is the so-called Abelian property of theavalanche model. We will follow the argument of Biggs [4], who uses a mixingtechnique:Let U be a legal sequence for the con�guration q and let v be a vector withv(v) � 0 for all vertices v. Then Uv is the sequence obtained from U by deleting the�rst v(v) occurrences of every vertex v from U . If v(v) is greater than the numberof occurrences of v in U , then all occurrences are deleted.Lemma 2.5. Let U and V be legal sequences for a con�guration q, with repre-sentative vectors u and v. Then the sequence Z = (V;Uv) is also legal for q.Proof. Let q0 = q��u. Suppose that Uv is legal for q0 up to the point wherethe vertex v is about to be �red for the ith time. Denote the con�guration at thispoint with pv. Let p be the con�guration which occurs just before the corresponding�ring of v in U , which is the (v(v) + i)th. (Note that u(v) > v(v), if v occurs inUv.)Let u0 and uv0 be the representative vectors of the initial segments of U and Uvup to these points, so that p = q��u0 and pv = q��(v + uv0 ).We will show that pv(v) � p(v). Given that the �ring of v is legal at p, thisimplies that the �ring of v at qv is legal, too.Evaluating pv and p at v we obtainp(v) = q(v) � u0(v) (dG(v) + sv) +Xu6=v u0(u)w(u; v)pv(v) = q(v) � (v + uv0 )(v) (dG(v) + sv) +Xu6=v(v + uv0 )(u)w(u; v):Since v is about to be �red for the ith time in Uv, we have(v + uv0 )(v) = v(v) + i� 1 = u0(v):If u 6= v does occur in Uv, suppose it has been �red j times. Then (v + uv0 )(u) =v(u) + j. If j = 0, then u0(u) � v(u) = (v + uv0 )(u):



2. CHIP-FIRING GAMES ON GRAPHS 24This follows, because if x0(u) were greater than v(u), then u would have been already�red in Uv, too. If j > 0, thenu0(u) = v(u) + j = (v + uv0 )(u):Finally, if u does not occur in Uv, then(v + uv0 )(u) = v(u) � u(u) � u0(u):Hence (v + uv0 )(u) � u0(u) for all vertices u, and v is a vertex which can be �red.Lemma 2.6. For any unstable con�guration q, all avalanches starting at q ter-minate at the same stable con�guration and have the same length.Proof. Let U and V be avalanches starting at q with representative vectors uand v. Then, by the preceding lemma, (V;Uv) is also a legal sequence for q. Weare given that the sequence V transforms q into a stable con�guration, so that novertex can be �red after V . Therefore, Uv must be empty, which can only be thecase if v(v) � u(v), for all vertices v 2 V(G). Similarly, V u must be empty, too,and therefore u(v) � v(v) for v 2 V(G). We conclude, that the sequences U andV have the same representative vectors and thus transform q into the same stablecon�guration and have the same length.Hence, given a con�guration q, we can de�ne an operator A, which transformsq into the unique stable con�guration reached after an avalanche. Furthermore, forany load vector l we de�ne a loading operator Ll : RV(G)+ ! S(G);Ll h = h+ l.Lemma 2.7. Every pair of operators A � Ll and A � Lk commutes:A � Ll � A � Lk = A � Ll+k;where l and k are arbitrary load vectors.Proof. We only need to show that A � Ll � A = A � Ll, or, more explicitlyA(Aq + l) = A(q+ l) for any con�guration q.Let u be an avalanche starting at q and let u0 be an avalanche starting at Aq+ l.Then (u; u0) is an avalanche starting at q+ l, by the preceding lemma leading to thesame con�guration as u0 starting at Aq+ l.Definition 2.8. We now additionally require that the game is properly loaded, properly loadedthat is, when l is the load vector of the game, from every vertex v with lv = 0, thereshould be a path to a loaded vertex u, that is a vertex u with lu > 0.We call a con�guration recurrent, if it is stable and can be reached after arbitrary recurrentcon�gurationlong time intervals, i.e., after arbitrary many applications of A � Ll. Formally, wede�ne the set of recurrent con�gurations R(G) asR(G) = \t2NA � Lt l �RV(G)+ � ;where l is the load vector and RV(G)+ is the set of all con�gurations of the game.



2. CHIP-FIRING GAMES ON GRAPHS 25Theorem 2.9. For a weakly dissipative, properly loaded game, the set R(G) ofrecurrent con�gurations does not depend on the loading vector l and has volumedet�.Proof. We call two con�gurations q and q0 equivalent, when their di�erenceis in the lattice generated by integer combinations of the columns of the transitionmatrix �: q � q0 , q� q0 = ��;where the components of � are integers.A set of con�gurations that contains for every con�guration q exactly one con-�guration equivalent to q is called a fundamental domain. The determinant ofthe transition matrix � expresses the volume of the parallelepiped spanned by thecolumns of the matrix, i.e. the volume of( pXi=1 �i�i : �i 2 (0; 1)) ;where �i is the ith column of �. This is precisely the volume of con�gurations ina fundamental domain. We will show, that the set of recurrent con�gurations is afundamental domain.The rule (+) for �rings implies, that Aq is equivalent to q for every con�gura-tion q 2 RV(G)+ . Furthermore, by de�nition of A, Aq belongs to the set of stablecon�gurations S(G). Hence, S(G) contains a fundamental domain. As this propertyis translation-invariant, Ll S(G) also contains a fundamental domain. Clearly, sodoes A � Ll S.Next we show, that any two equivalent recurrent con�gurations q and q0 areidentical, if the load vector l satis�eslv � �v;v for all v 2 V(G):Let h0 be a stable con�guration so that q0 = A � Ll h0. Because Ll h0 and q areequivalent con�gurations, there is a vector � with Ll h0�q = ��, where all compo-nents of � are integers. Furthermore, by the condition above we have Ll h0v � qv.Thus, Lemma 2.2 implies that there is a vector � with Ll h0 � q = ��, where allcomponents of � are non-negative. Because, again by Lemma 2.2, � is nonsingular,� and � must be identical, so the components of � are non-negative integers.Now we choose t so large, that there is a legal sequence with representativevector � starting at h = Lt l h+�� = Lt l h+ Ll h0 � q;where A � Lt l h = q. As all components of l are positive, this can be done. Thenthere exists an avalanche starting at h passing through Lt l h. Thus we obtainAh = A � Lt l h = q. Furthermore, an avalanche from Lt l h to q started at hterminates at Ll h0. We obtain Ah = q0, and therefore, by the Abelian propertyproved in Lemma 2.6, q = q0.This proves, that the set of recurrent con�gurations is a fundamental domain,if the load vector satis�es lv � �v;v, for all vertices v. it remains to show that the



2. CHIP-FIRING GAMES ON GRAPHS 26set of recurrent con�gurations is independent of the load vector, provided that thegame is properly loaded.Let l and l0 be proper load vectors. The proper loading condition guaranteesthat, for any t 2 N, there is a t0 2 N so that there exists a legal sequence starting att0 l0 passing through a con�guration l with components greater than t l. Then, forevery con�guration h, we haveA � Lt l(S) � A � Lt l �A � Ll�t l(S)�= A � Ll(S):The last equation follows from Lemma 2.7. Furthermore, we haveA � L�lh = A(�l+ h)= A(t0 l0 + h)= A � Lt0 l0h:Therefore, A�Lt l(S) � A�Lt0 l0(S). This implies, thatTt2N A�Lt l � Tt2N A�Lt l0 , forany two load vectors l and l0. We conclude, that the set of recurrent con�gurationsR(G) = Tt2N A � Lt l cannot depend on the load vector l.The following corollary reveals the connection of the recurrent con�gurationswith the number of spanning trees of G.Corollary 2.10. Let G be a (di)graph with positive edge weights and let r beone of its vertices. Then the volume of all recurrent con�gurations of a weaklydissipative, properly loaded game with sr = 1 and sv = 0 for v 6= r is the same asthe number of spanning trees of G rooted at r.Proof. By the preceding theorem, the volume of recurrent con�gurations ofthe game is det�. Adding all rows of � to the row corresponding to r, we obtaina matrix M with (M)r;r = 1 and (M)r;i = 0 for i 6= r. Hence det� = detCr;rc .By the Matrix-Tree-Theorem, see Chapter 5, Section 1 on page 53, this determinantevaluates to the number of spanning trees of G rooted at r.Now consider the vector ��1 l. If there is a t 2 Z and a vector n with integercomponents, so that t��1 l = n, then t l = �n. This implies that every sequenceof load and avalanche operators starting at any given con�guration is periodic witha period t, and vertex v �res nv times during a period.This is the case for graphs and Eulerian digraphs G with positive edge weights,when the dissipation is de�ned as in the corollary above and the load at each vertexis equal to its dissipation: Then we have ��1 l = (1; 1; : : : ; 1)t. Note that in thiscase every vertex �res exactly once during a period. This fact enables us to �nd abijection between recurrent con�gurations and the spanning trees of a graph.Theorem 2.11. Let G be a graph or Eulerian digraph with positive edge weights.Given an arbitrary ordering of the edges of G, let � be the lexicographic ordering ofall paths from some vertex to a vertex r. Furthermore, let the load and the dissipationat r be equal to one and at all other vertices equal to zero. Then the following twoconstructions map every spanning in-tree T 2 Tr(G) with weight w(T ) onto a set ofrecurrent con�gurations of G with volume w(T ) and vice versa:



2. CHIP-FIRING GAMES ON GRAPHS 27)
 Let q be a recurrent con�guration of G. We construct an avalanche v =(v1; v2; : : : ; vp) starting at Llq as follows: Let v1(q) = r.We say that a vertex u is primed by the �ring of a vertex in the avalanchev, if u has been stable before the �ring, but is unstable afterwards.Clearly, any unstable vertex must have been primed by some other vertex,which in turn must itself have been primed, and so on. Because G is a graphor Eulerian digraph, in every legal sequence each vertex is �red at most onceand hence is primed at most once.It follows that there is a unique path Pu = (u = u1; u2; : : : ; uk = r) fromevery unstable vertex u to the root r, so that ui has been primed by ui+1 fori 2 f1; 2; : : : ; k � 1g. Let vk+1(q) be the vertex which is unstable after the�rings of v1(q); v2(q); : : : ; vk(q) and whose path Pu is the �rst in the givenlexicographic order.Let T1 = r and Tk+1 be the union of Tk and the vertices which have beenprimed by vk(q), together with the edges joining these vertices to vk(q). ThenT (q) = Tp is a spanning in-tree of G rooted at r. Equivalently, T (q) containsthe edges of G so that one end primes the other.(
 Let T be a spanning in-tree of G, rooted at r. For any vertex v 6= r of G, letv0 be the vertex succeeding v on the path from v to r in T .For an arbitrary vector � with �v 2 [0; 1), we de�ne the con�gurationq(T; �) byqv(T; �)) = (diG(v)�Pu�T v0 w(v; u) + �vw(v; v0) for v 6= rdiG(v) + �v otherwise,where u �T v0, if the unique path in T from u to r comes before the uniquepath from v0 to r in the given lexicographic order, and u �T v0 if u = v0 oru �T v0.Proof. We have to show that each of the con�gurations de�ned in the secondconstruction is recurrent and that the two constructions are inverse to each other.Suppose that a spanning in-tree T is given. Let q = q(T; �) be a con�gurationde�ned by the second construction. We inductively show that the �rst constructioncan be applied to q and the tree produced is the same as T .We make the induction hypothesis that Tk is a subtree of T , and the sequence�v1(q); v2(q); : : : ; vk(q)� produced by the �rst construction is an initial segment ofthe order �T . Clearly, this holds for k = 1.Let v be a vertex primed by vk(q). We show that vk(q) = v0, hence vk(q) isadjacent to v in T and thus Tk+1 is also a subtree of T :Because v has been primed by vk(q), and v1(q); v2(q); : : : ; vk(q) is an initialsegment of the order �T , we have0 � qv + Xu�T vk(q)w(v; u) � diG(v) < w�v; vk(q)�:



3. EULERIAN TOURS 28By the de�nition of q we obtain0 � Xu�T vk(q)w(v; u) � Xu�T v0 w(v; u) + �vw(v; v0) < w�v; vk(q)�:It follows from the left inequality that vk(q) �T v0, and from the right inequalitythat v0 �T vk(q). This implies that vk(q) = v0, which is what we wanted to show.To complete the induction step, we have to show that if v is the next vertexafter vk(q) in the order �T , we have v = vk+1(q).All vertices preceding v in �T occur in fv1(q); v2(q); : : : ; vk(q)g. Because ofv0 = vk(q) and by the de�nition of q, v is unstable after the �ring of the sequence�v1(q); v2(q); : : : ; vk(q)� and is thus in Tk+1. We have already shown that Tk+1 is asubtree of T , so v is also next after vk(q) in the order �Tk+1 , and therefore, by the�rst construction, vk+1(q) = v.This also shows, that q is recurrent, because the sequence�v1(q); v2(q); : : : ; vp(q)�is legal for Llq and every vertex is �red exactly once.Finally, let q by a recurrent con�guration and let T = T (q) be the spanningin-tree produced be the �rst construction. It remains to show that q is in the set ofcon�gurations de�ned by the second construction, given T .We want to show that, if v0 primes v,�vw(v; v0) = qv � diG(v) + Xu�T v0 w(v; u)is in �0; w(v; v0)�. Because of0 � qv � diG(v) + Xu�T v0 w(v; u) < w(v; v0);this is indeed the case.Note that the preceding correspondence maps the recurrent con�gurations of a graphonto its in-trees, not its arborescences, although the volume of recurrent con�gu-rations equals the number of arborescences of the graph. For (weighted) Euleriandigraphs the number of in-trees and arborescences coincide. For general digraphs,however, the number of in-trees is di�erent from the number of arborescences.In Section 3 we give a bijection between the spanning in-trees and arborescencesof an unweighted Eulerian digraph, but we do not know a bijective proof for weightedEulerian graphs. 3. Eulerian toursIn this section we will show that in an unweighted Eulerian digraph the numberof Eulerian tours is closely related to its number of spanning trees.BEST-Theorem (de Bruijn, van Ehrenfest, Smith and Tutte). Let G be anEulerian digraph, that is, for each vertex of G the in- and outdegree coincide. Then



3. EULERIAN TOURS 29the number of arborescences does not depend on the root chosen and can be relatedto the number of directed Eulerian tours as follows:e(G) = Yv2V(G)(diG(v) � 1)! � t(G):The following two maps de�ne a correspondence between Eulerian tours with �nalarc e leading to a vertex r and arborescences of G rooted at r:)
 Let E be an Eulerian tour with �nal arc e leading to a vertex r. Constructthe corresponding arborescence as follows:Let T be the graph consisting only of the vertex r.WHILE not all vertices of G are in TSelect the �rst arc in E which leads to a vertex which is not yet in T .Add this arc and the vertex it is leading to, to T .END WHILE.(
 Let T be an arborescence rooted at r. The following construction yields one oftheQv2V(G)(diG(v)�1)! corresponding Eulerian tours with �nal arc e, leadingto r:Let E be the tour (v; e; r), where v is the vertex e is incident from. SetT 0 = T [ e.REPEATLet v be the initial vertex of E.If there is an arc in G incident to v, which is not in T 0 and not yet in there arediG(v)� 1 arcsleading to vwhich are not inT 0E, then add the vertex v0 it is incident from, and the arc itself, to thebeginning of E.Otherwise, select the arc in T 0 which is incident to v and add the vertexv0 it is incident from, and the arc itself, to the beginning of E.UNTIL all arcs incident to v0 are in E.Proof. It is clear that the �rst construction produces an arborescence of G.We have to show that the second construction always produces an Eulerian tour ofG: Let E be the walk constructed by the algorithm given an arborescence T . It isclear, that E is a closed walk and all arcs incident from and to r are in E. Let v beany vertex of G. In T there is a walk (r; e1; v1; e2; : : : ; vn�1; en; v) leading from r tov. We prove inductively, that all arcs incident to and from v are in E.The arc e1 is in E. If, for 0 < i < n, the arc ei is in E, then all arcs incidentto vi must be in E, because ei 2 E(T ) is the last arc incident to vi added to E.Therefore, all arcs incident from vi are also in E. This applies in particular to ei+1.Hence, as v was arbitrary, all arcs of G are in E, that is, E is Eulerian.Finally, let T be an arborescence of G and let E be one of theQv2V(G)(diG(v)�1)!Eulerian tours produced by the second construction given T . It remains to showthat the arborescence produced by the �rst construction given E is equal to T .Clearly, for each vertex v 2 V(G) we can �x an arbitrary order in which the arcsincident to v shall be traversed, provided that the arc contained in T is the �rst arcin this order. On the other hand, constructing the arborescence given an Eulerian



5. MATCHINGS 30tour E, we also select the arc which leads us to a particular vertex the �rst time inE. All the other arcs leading to this vertex are ignored.Note, that we also obtained the important result, that in an Eulerian digraphthe number of spanning trees does not depend on the root chosen. This is also truefor weighted Eulerian digraphs, i.e., graphs where the sum of the weights of thearcs incident to a vertex is the same as the sum of the weights of the arcs incidentfrom this vertex. This can be shown with the Matrix-Tree-Theorem, see Chapter 5,Section 1, Corollary 1.1.Furthermore, it is clear that similar constructions de�ne a correspondence be-tween Eulerian tours with �rst arc e starting from a vertex r and spanning in-treesof G rooted at r. This enables us to construct a bijection between the arborescencesand spanning in-trees of G. Again, using the Matrix-Tree-Theorem it can be shownthat also in weighted Eulerian digraphs the number of arborescences and the numberof spanning in-trees is the same. 4. ForestsAs we can count the spanning trees of a graph, we can also try to determine itsnumber of spanning forests. It can be a very di�cult task to count the spanningforests of a graph with arbitrary roots. In Chapter 4, Section 3 we will solve thisproblem for some very simple families of graphs.However, given a graph G and a subset R of the vertices of G it is very easy toobtain a relationship between the number of spanning forests of G with roots in Rand the spanning trees of a related graph:Theorem 4.1. Let G be a (weighted) (di)graph and let R be a subset of thevertices of G. Let G�Rc be the contraction of G to the vertices in V(G)nR de�ned inDe�nition 2.13, denoting the new vertex by r. Then there is a (weight preserving)bijection between the spanning forests of G with roots in R and the spanning treesof G�Rc, rooted at r.Proof. This is obvious.Remark. Of course, sometimes it is still easier to count the spanning forests ofa graph directly, rather than making this detour, see for example Corollary 3.2 inChapter 4. But in many cases we can derive the corresponding formula for spanningforests easily from the expression for spanning trees. A particularly nice example isthe encoding given in Theorem 3.3 in the same chapter and the following theoremsand propositions. 5. MatchingsApart from spanning trees, the most important type of subgraph of graphs areperfect matchings:Definition 5.1. A perfect matching M of a graph G is a one-regular spanning perfectmatchingsubgraph of G.



5. MATCHINGS 31Remark. If a graph has a perfect matching, its number of vertices must beeven.In 1974, Temperley [38] found a bijection between the spanning trees of them � n grid and perfect matchings of the (2m + 1) � (2n + 1) grid with a cornerremoved. Kenyon, Propp, and Wilson [23] generalized this bijection to spanningtrees of weighted planar (di)graphs.Let ~G be a weighted planar digraph. We de�ne a weighted planar graph G0 as seeDe�nition 1.1follows: Let the vertex set of G0 be V( ~G)[E( ~G)[F( ~G). We will denote the vertices inG0 by v0, e0 and f 0, depending on the corresponding structure in ~G. For an example,see Figure 1. Note, that we draw the vertex corresponding to the unbounded faceof ~G as remarked in Section 1.We connect two vertices of G0 by an edge if their corresponding structures in ~Gare either an edge and its head, or an edge and one of the faces it bounds.Let the weight of an edge in G0 between two vertices v0 and e0, corresponding toa vertex v and an edge e of ~G, be the weight of the edge e in ~G. The weight of anedge joining e0 and f 0, corresponding to an edge e and a face f of ~G, is always 1.Theorem 5.2. Let ~G be a planar digraph and let G be its underlying graph.Construct G0 as above. Let �v be a vertex and �f a face of ~G. If �v0 is a vertex onthe border of �f 0, then the following correspondence is a weight-preserving bijectionbetween the spanning trees of ~G rooted at �v and the perfect matchings of G0 nf�v0; �f 0g:)
 Let ~T be a spanning tree of ~G rooted at �v, and let T be the underlyingspanning tree in G. Let T � be the spanning tree of G� corresponding to the see the proof ofTheorem 1.2 inChapter 2edges not in T . Let ~T � be the digraph obtained by orienting the edges of T �away from �f . Then we can construct a perfect matching M of G0 as follows:For each vertex v 2 V( ~G), pair v0 with the unique vertex e0, e 2 E( ~G), suchthat v is the head of e in ~T , and for each face f 2 F( ~G), pair f 0 with theunique e0, such that f is the head of e in ~T �.(
 Let M be a perfect matching of G0. Then the edge set of the correspondingspanning tree of ~G consists of the edges e, such that e0 is paired with a vertexof G0 corresponding to a vertex of ~G.Remark. We can extend this theorem to undirected weighted graphs by think-ing of each undirected edge as two arcs, one in each direction. (See also De�nition 1.1in Chapter 2.)Proof. As we can recover the spanning tree from the matching it is mappedto, the mapping is injective. Let ~T be the spanning subgraph of ~G formed by theset of edges e, such that e0 is paired with a vertex of G0 corresponding to a vertexof ~G. We have to show, that ~T indeed is a spanning tree of ~G, rooted at �v. First weshow that T , the underlying graph of T , is acyclic:Suppose T contained a cycle. Because G and G0 are planar, by the Jordan-Curve-Theorem the cycle divides the plane (and hence G and G0) into two regions,one of which contains both �v and �f and the other of which contains neither. Weclaim that each part contains an odd number of vertices of G0:
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5. MATCHINGS 33Modify G by replacing either of the two regions by a single face. By Euler'sformula, the number of vertices, edges and faces in the resulting graph must be even.Since there are an even number of these elements on the cycle (as many vertices asedges) and an odd number in the modi�ed region (1 face), the unmodi�ed regionmust contain an odd number of elements, corresponding to the vertices of G0, aswell.Since the edges of the cycle disconnect G0 into parts lying in the two regions,the matching must pair elements within one region. This is impossible, since eachregion has been shown to contain an odd number of vertices of G0.As ~T has ���V( ~G)��� � 1 edges, it remains to show that all edges are directed awayfrom �v. This is the case, as two edges in ~T pointing towards the same vertex areadjacent in G0, and therefore cannot be contained in one matching.Remark. Ciucu [14] used this correspondence in conjunction with a theoremwhich expresses the number of perfect matchings in a graph in terms of the numberof perfect matchings of a related graph to show that the even Aztec rectangle hasexactly four times as many spanning trees as the corresponding odd Aztec rectangle.



CHAPTER 4Combinatorial ProofsIn this chapter we will be concerned with some combinatorial methods thatenable us to determine the number of spanning trees of a graph. Although thesemethods apply only to rather restricted classes of graphs, sometimes strikingly simplecalculations reveal the number of spanning trees of seemingly complex graphs.1. Reduction ProceduresIt is obvious that any spanning tree of a graph either does or does not contain agiven edge e. Furthermore, the number of spanning trees which contain a speci�ededge e is the same as the total number of spanning trees of the graph with e and itsendnodes contracted to a single node. Hence, as already Feussner [16, 17] noted,t(G) = t(Gjec) + t(G�ec):More generally, let E � E(G) be a set of edges of a connected graph G. Supposethat the subgraphs GjE and GjEc have exactly two vertices in common. Thent(G) = t(GjEc) � t(G�E) + t(GjE) � t(G�Ec):For example, take E to be a set of k parallel edges, thent(G) = t(GjEc) + k � t(G�Ec):Similarly, if E is the edge set of k parallel paths with lengths l1, l2, : : : , lk joiningtwo vertices, thent(G) = l1 � � � lk � t(GjEc) + kXi=1 l1 � � � �li � � � lk � t(G�Ec):Subdividing an edge e of G, denoting the resulting graph with Gs, we gett(Gs) = t(Gjec) + t(G):Using these relations we get recursions for the number of spanning trees for somefamilies of graphs: 34



1. REDUCTION PROCEDURES 35Example 1.1. The ladder is de�ned as Ln = K2 � Pn. For n � 3 we havet(Ln) = t(
b

bb b

b

b

b

b

b

b

b b

b b

b

b

b

b

b

b)= t( b

b

b
) � t(

b

bb b

b

b

b

b

b b

b b

b

b

b

b) + t(
b b

bb ) � t(
b

bb b

b

b

bb

bb

b

bb

b

b
)= 3t(

b

bb b

b

b

b

b

b b

b b

b

b

b

b) + t(
b

bb b

b

b

bb

bb

b

bb

b

b

b )� t(
b

bb b

b

b

bb

bb

b

b

b

b)= 4t(
b

bb b

b

b

b

b

b b

b b

b

b

b

b)� t(
b

bb b

b

b

bb

bb

b

b)= 4t(Ln�1)� t(Ln�2):Furthermore, we have t(L1) = 1 and t(L2) = 4. By standard methods for solvinglinear recursions we obtaint(Ln) = 12p3 h�2 +p3�n � �2�p3�ni :Example 1.2. The fan is de�ned as Fn = K1 5 Pn. For n � 3 we havet(Fn) = t( bb
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1. REDUCTION PROCEDURES 36Example 1.3. The wheel is de�ned by Wn = K1 5 Cn. For n � 4 we havet(Wn) = t( bb

b

b

b

b

b

b

b )= t( bb

b

b

b

bb

b

b

b ) + t( bb

b

b

b

b )= t(Fn) + t( bb

b

b bb

b ) + t( bb

b

b )= t(Fn) + t(Wn�1) + t( bb

b

b

bb

b

b

b )� t( bb

b

b )= t(Fn) + t(Wn�1) + t( bb

b

b

bb

b

b

b

bb

b

b

b )� t( bb

b

b

bb

b

b

b )� t( bb

b

b

bb

b

b

b

) + t( bb

b

b )= t(Wn�1) + 2t(Fn)� 2t(Fn�1) + t(Fn�2)= t(Wn�1) + t(Fn) + t(Fn�1):De�ning C2 as two parallel edges, this recursion holds also for n = 2. Therefore,with t(W2) = 3 and t(W4) = 16, we havet(Wn) =  3 +p52 !n + 3�p52 !n � 2:For weighted graphs G there is another reduction process, which consists ofreplacing a star Sn � G by a complete graph Kn with appropriately chosen weights,thus reducing G by one vertex.We number the vertices of the star except the one in the middle clockwise from1 to n, and label the vertex in the middle with 0. Suppose that the edge connectingvertex i with the vertex in the center of the star has weight ai, i 2 f1; 2; : : : ; ng. Let� =Pni=1 ai and let �i;j = aiaj� .Let G0 be the graph obtained from G by replacing the star by the completegraph, where the edge connecting vertices i and j has weight �i;j. Thent(G) = �t(G0):
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Unfortunately, we do not have a combinatorial proof for this, so we have to use theMatrix-Tree-Theorem proved in Chapter 5, Section 1 on page 53. It expresses thenumber of spanning trees of a graph as the determinant of any principal minor ofits Laplacian matrix.The Laplacian matrix of G can be written as

CG =
0BBBBBBBBBBBBBB@

� �a1 �a2 : : : �an 0 : : : 0�a1 a1 + d1 0 : : : 0�a2 0 a2 + d2 ... A... ... . . . 0�an 0 : : : 0 an + dn0... At B0
1CCCCCCCCCCCCCCA ;

where di = dG(i) � ai. By the Matrix-Tree-Theorem, t(G) equals the determinantof any principal minor of CG: t(G) = det(CG)rc :For our purposes we demand r > n. We can then transform CG into the Laplacianmatrix of G0 by adding ai� times the �rst row to each row i, i 2 f1; 2; : : : ; ng. Theresult of these operations is the matrix0BBBBBBBBBBBBB@
� �a1 �a2 : : : �an0 a1(1� a1� ) + d1 �1;2 : : : �1;n0 �1;2 ...... ... . . . �n�1;n A0 �1;n : : : �n�1;n an(1� an� ) + dnAt B

1CCCCCCCCCCCCCA :



1. REDUCTION PROCEDURES 38It remains to check that ai(1� ai� ) + di is indeed the degree of vertex i in G0:nXj=1j 6=i �i;j + di = nXj=1j 6=i aiaj� + di = ai(1� ai� ) + di:The inverse operation is not quite as nice to describe. Furthermore, �i;j =aiaj� implies that the weights of the complete subgraph have to obey the followingboundary conditions: �i;jai is constant for all i.If these conditions are satis�ed, it can be checked that the following weights ofthe star are appropriate: a1 = �1;2�1;3�2;3 + nXl=1l 6=1 �1;land, for k 6= 1 ak = �1;k(1 + �2;3�1;2�1;3 nXl=1l 6=1 �1;l):The variable � then evaluates to� = �2;3�1;2�1;3 0BB@ nXl=1l 6=1 �1;l + �1;2�1;3�2;3 1CCA2 :An interesting special case occurs when all weights before and after the trans-formation are integers. In this case, G and G0 can be represented without weightsby replacing an edge with weight k by k parallel edges.Example 1.4. A complete subgraph Kn of a graph G { with all edge weights�i;j equal to one { can be replaced by a star Sn, where each edge has weight ai = n.This applies also for the complete graph itself. The number of spanning trees of thecorresponding star with all edge weights equal to n is nn. The variable � evaluatesto n2. Hence, t(Kn) = 1n2nn = nn�2:In fact, these transformations can be generalized to apply to digraphs.Remark. By summing up over all edges of a graph we obtain another niceidentity: Let T1, T2, : : : , Tt be the spanning trees of G. Then we haveqXi=1 �(ei 2 Tj) = p� 1tXj=1 �(ei 2 Tj) = t(G�eic):



2. DIVIDING GRAPHS 39Hence Xe2E(G) t(G�ec) = qXi=1 t(G�eic))= tXj=1 qXi=1 �(ei 2 Tj)= tXj=1(p� 1)= (p� 1) � t(G):And Xe2E(G) t(Gjec) = qXi=1 t(Gjeic))= qXi=1(t(G)� t(G�eic))= q � t(G)� (p� 1) � t(G)= (q � p+ 1) � t(G):
2. Dividing GraphsAlthough the method of restriction and contraction works well for families of`linear' graphs, it is already di�cult to count the spanning trees of the wheel and it isnot applicable for graphs like the square of the cycle. Following the method presentedbelow we can count spanning trees in some graphs with rotational symmetry likethe square of a circle C2n, the M�obius ladder Mn or the cyclic ladder K2 � Cn.First we embed the graph on a suitable surface. This can be the cylinder or theM�obius strip.Then we cut the surface along some Jordan path to obtain something homeo-morphic to a rectangle. In the following we will identify a Jordan path with the setof edges it crosses. Hence we consider two Jordan paths as di�erent only if theycross di�erent sets of edges.Example 2.1. The following �gure depicts the cyclic ladder C6�K2 embeddedin a gray cylinder and a dotted Jordan path which cuts the cylinder:
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bBy deleting all the edges of the graph the Jordan path crosses we arrive at aspanning subgraph. We now try to �nd a set P(G) of Jordan paths, so that theconcatenation of any two of them induces a cutset of the graph and every spanningtree is contained in exactly one of the graphs GjP c , where P is the set of edgescrossed by a particular Jordan path.This is easy for planar graphs embedded in a cylinder, as K2 � Cn or C22n:Consider the Jordan paths running from one to the other border of the cylinder.Concatenating any two such Jordan paths we obtain a closed path which separatesthe surface into two regions. As the paths are supposed to induce di�erent cuts, theremust be at least one vertex in each of the regions. Hence, deleting the edges crossedby any of the two paths, we obtain a disconnected graph. Thus, as a spanning treeis connected, it cannot be induced by two di�erent Jordan paths.Given a spanning tree, it is always possible to �nd a Jordan path as describedabove, that does not cross any edge of the tree, as a tree cannot contain a cycle.For non-planar graphs embedded in a M�obius strip, like the M�obius ladder Mnor C22n+1, we may use the family of closed Jordan paths starting at an arbitrary �xedpoint on the border of the M�obius strip and cutting it into something homeomorphicto a rectangle. Again, two such paths induce a cutset of the graph, as the �rst pathcuts the M�obius strip into a rectangle and the second cuts the rectangle into tworegions.Therefore, every Jordan path in P(G) corresponds to a set of spanning trees andany two such sets are disjoint. Furthermore, every spanning tree is contained inone of these sets. So all we have to do is to add up the number of spanning treescorresponding to each Jordan path in P(G):t(G) = XP2P(G) t(GjEc):In the various ladders we deal with below, we will use the term `rungs' forthe edges connecting the two paths or circles. The explicit formulas can easily beobtained using the recursions of Section 1.Example 2.2. The cyclic ladder K2 � Cn can be embedded in a cylinder. AnyJordan path crossing k < n `rungs' results in a ladder of length n � k with two
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Figure 1. A strip graphpending paths, one on each end. For any k > 0 there are 2n such paths, since thereare n edges to start with and two directions to go: clockwise or counterclockwise. Fork = 0, that is, for the Jordan path which crosses no `rungs', there is no counterpart,of course. Hence we havet(K2 � Cn) = 2n n�1Xk=1 t(Lk) + nt(Ln)= n2 h�2 +p3�n + �2�p3�n � 2i :Example 2.3. The M�obius ladder Mn can be embedded in a M�obius strip.Again, a Jordan path crossing k < n `rungs' and any two other edges results ina ladder of length n� k with two pending paths, one on each end. For every pair ofedges which are not `rungs' we have two di�erent Jordan paths, except for the case,where the two edges are exactly opposite of each other belonging to the same face ofMn. Furthermore, there are 2n Jordan paths crossing all the `rungs' and only oneother edge, inducing a path of length 2n� 1. Hence, we havet(Mn) = 2n n�1Xk=1 t(Lk) + nt(Ln) + 2n= n2 h�2 +p3�n + �2�p3�n + 2i :Example 2.4. Fore even n, the square of the circle C2n is a planar graph. Itsspanning trees can be counted exactly the same way as the spanning trees ofK2�Cn,except that the Jordan paths now induce strip graphs as in Figure 1. Note that thesestrip graphs have the same dual as the fan. Hencet(C2n) = 2n n�1Xk=1 t(Fk) + nt(Fn) = nf2n;where fn is the nth Fibonacci number.For odd n, the square of the circle C2n must be embedded in the M�obius strip.Proceeding similarly to the example of the M�obius ladder, we obtain the same ex-pression as for even n. 3. CodesIn 1918, Pr�ufer [34] constructed a correspondence between the trees of the com-plete graph Kp for p > 1, and words of p� 2 letters from a p-element set, showingt(Kp) = p p�2.



3. CODES 42With a minor change, Pr�ufer's algorithm can be used for encoding any spanningforest of the complete graph:Theorem 3.1 (Pr�ufer 1918). The following two maps de�ne a correspondencebetween labelled forests on p vertices with roots in R (p > jRj) and words of p� jRjletters from a p-element set, the last letter being an element of R.)
 Let FR be a forest on p vertices labelled with numbers from 1 to p with rootsin R. Produce the corresponding word as follows:WHILE there is at least one edge in the forestWrite down the label of the vertex adjacent to the leaf with the smallest in a forest a leafis not a rootand has degreeone (outdegreezero)label.Remove this leaf and its incident edge.END WHILE.)
 Let w = (v1; v2; : : : ; vp�jRj) be a word with p� jRj letters, all in f1; 2; : : : ; pg,the last in R. Let V be a set containing the vertices labelled from 1 to pwhich are not roots. Produce the corresponding tree as follows:WHILE the word is not emptyLet u be the vertex with the smallest label in V n R which does notappear in w, let v be the �rst letter of w.Add (v; u) to the edge set. Drop the �rst letter of the word w and in digraphs, anarc (v; u) startsin v andterminates in uremove u from the set V .END WHILE.Remark. In Pr�ufer's original encoding for trees, the last edge would never beremoved as it must always be incident to the root. Hence his encoding producescodes of length p � 2. Using the variant of his encoding described above, though,the following corollary is obtained much easier:Corollary 3.2. For a given set of roots R there are jRj � p p�jRj�1 spanningforests of the complete graph Kp.Clearly, Pr�ufer's encoding can be applied in just the same manner when we con-sider spanning trees of any graph or digraph. In these cases some codes simply willnever be produced. When multiple edges are allowed, some codes will be producedmore often. It seems though, that it is not any easier to count those codes whichmay be output of the procedure than to count the spanning trees of the graph insome other way.Knuth [26], later Kelmans [22] and �nally Pak and Postnikov [33] generalizedPr�ufer's encoding { although the constructions in the latter two papers were in-correct, the idea was right { to deal with the generalized lexicographic productG [H1;H2; : : : ;Hp] of graphs G and Hv for v 2 V(G).Given a linear order on the vertices of G and H1, H2, : : : , Hp, in what followswe will use the lexicographic order on the vertices of the lexicographic productG [H1;H2; : : : ;Hp], id est:ui < vj :, u < v or u = v and i < j:



3. CODES 43The encoding we will present enables us to encode the spanning trees of any(di)graph of the formG [H1;H2; : : : ;Hp]. An illustration will be given in Example 3.4below.Theorem 3.3 (Knuth 1968, Kelmans 1989, Pak and Postnikov 1990).The two maps below de�ne a one to one correspondence between the spanning treesof G [H1;H2; : : : ;Hp] with root rx (p > 1) and structures w as follows:w = �T ; (Fv)v2V(G); (wv)v2V(G); (wv)v2V(G)�, where� T is a tree in Tr(G)� Fv is a rooted forest of Hv� wv is a word with doT (v) letters in Hv, and the last letter of wr belongs to thecomponent of Fr which contains the root� wv is a word with c(Fv)� 1 letters in NiG [H1;H2;:::;Hp](Hv))
 Let T be a spanning tree of G [H1;H2; : : : ;Hp] with root rx. Produce w asfollows:WHILE there is at least one edge in the tree TLet ui be the leaf with the smallest label, vj the vertex incident to ui,hence (vj; ui) 2 E(T ).If v = u then let (vj; ui) be a new edge of Fv.If v 6= u and ui is not the last vertex of Hu remaining in T then writevj to wu.Otherwise write vj to wv and let (v; u) be a new edge of F .Remove this leaf and its incident edge.END WHILE.(
 Let w be a structure as described above. Let V be a set containing thevertices of G [H1;H2; : : : ;Hp] except of rx. Produce the corresponding treeT as follows:WHILE not all of the words in w are emptyLet ui be the vertex with the smallest label in V which has outdegreezero in Fu and does neither occur in wv, nor in wu. Remove ui from V . ui might be aroot in Fu!If ui has a predecessor in Fu, then let vj be this vertex and remove(vj; ui) from Fu.If ui does not have a predecessor in Fu but wu 6= ;, then let vj be the�rst letter in wu.Otherwise let vj be the �rst letter in wv, where v is the predecessor ofu in F .Remove this occurrence of vj and add (vj; ui) to the edge-set of T .END WHILE.Remark. Using Theorem 4.1 in Chapter 3 we can transform this theoreminto a theorem on spanning forests: Let G and H1;H2; : : : ;Hp be graphs and Rbe a subset of the set of vertices of G. Then the number of spanning forestsFR(G [H1;H2; : : : ;Hp]) { forests that have roots in Sv2RHv { is equal to the num-ber of spanning trees in Tr(G0 �Rc [H1;H2; : : : ;Hp�jRj;HR]), where HR is the single



3. CODES 44vertex to which the vertices in R are contracted, and G0 has the same vertex set asG but every edge in G between a vertex r 2 R and some other vertex not in R isreplaced by jV(Hr)j edges, and every edge between two vertices r1 and r2 in R isreplaced by jV(Hr1)j jV(Hr2)j+ jE(Hr1)j+ jE(Hr2)j edges.Applying Theorem 3.3 to G0�Rc [H1;H2; : : : ;Hp�jRj;HR], we see that the spanningforests of G [H1;H2; : : : ;Hp] with roots in Sr2RHr, where R � V(G) are mappedonto structures w as follows (the details are left to the reader):w = �F ; (Fv)v2V(G)nR; (wv)v2V(G); (wv)v2V(G)nR�, where� F is a forest in FR(G),� Fv is a rooted forest of Hv,� wv is a word with doF (v) letters in Hv,� wv is a word with c(Fv)� 1 letters in NiG [H1;H2;:::;Hp](Hv).The maps between these structures and FR(G [H1;H2; : : : ;Hp] are the same asabove, except that the root rx must be replaced with the set of roots Sr2RHr.Before we embark on the proof we give an example:Example 3.4. Consider the lexicographic product
b

bb

bb b1 3 2 [ bcbbab b c , ba , b

bab ]. (Theencircled vertex bcb denotes the root.) The following �gure depicts the resulting graphand one of its spanning trees.
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31 2Proof of Theorem 3.3. We prove that the two maps are well de�ned andinverses of each other.)
 produces a set w as demanded:



3. CODES 45We prove this by induction on the number of vertices of G [H1;H2; : : : ;Hp]:Suppose the statement holds for any tree T 0 of G0[H 01;H 02; : : : ;H 0p] with a givennumber of vertices. Let T be a tree of G [H1;H2; : : : ;Hp] with one more vertex. Letui be the leaf with the smallest label and vj the vertex incident to ui. Now thereare three possibilities:� v = u:Removing ui and (vj; ui) gives a tree T 0 of G [H1; : : : ;Hu n ui; : : : ;Hp]. Byinduction, T 0 is encoded by a structure w0 of the type described above. Wehave to show that w = w0 with F 0v replaced with Fv = F 0v [ (vj; ui) is anencoding of T as demanded. This is the case, because Fv is still a forest ofHv and c(Fv) = c(F 0v).� v 6= u, but there is another vertex besides ui in Hu:Removing ui and (vj; ui) again yields a tree T 0, just as above. Again T and wvfor v 2 V(G) remain unchanged, but now c(Fu) = c(F 0u) + 1 and wu = vj; w0u.Again the algorithm does the right thing.� v 6= u, and ui is the only vertex in Hu:In this case we get a tree T 0 of (G nu) [H1; : : : ; �Hu; : : : ;Hp]. Now wv = vj; w0vand E(T ) = E(T 0) [ (v; u), accordingly doT (v) = doT 0(v) + 1. Hence, for v 6= r,all conditions imposed on w are still satis�ed. Now suppose v = r. We haveto show, that the last letter of wr belongs to the component of Fr whichcontains the root. If w0r 6= ; we are done, as the last letter of w0r belongsto the component of F 0r which contains the root by induction. OtherwisedoF 0(r) = 0 which means that Hu = ui is the only subgraph connected to Hr,hence it must be connected to a component of F 0r which contains a root.(
 produces a tree in Tr(G [H1;H2; : : : ;Hp]):Let W be a multiset containing the letters of (wv)v and (wv)v, and all letters uiwith doFu(ui) 6= 0. Let W 0 be the set of distinct letters in W n frxg. We have toshow that there is always a vertex ui in V nW 0, unless W is empty:At most jW j � jW 0j � 1 letters can be removed from W without decreasing thesize of W 0, as the root rx is removed last, which we will show later. Hence, asjW j � jV j, there are at least jW 0j + 1 letters remaining in V , whereas W 0 has notchanged.It remains to show that the last letter removed is the root:First we have to show that the last letter of a word wv can be removed only, iffor (v; u) 2 T all words wu and wu are already empty and Fu consists of isolatedvertices only. In order to see this, suppose that wv contains only a single letter vj,and, when (v; u) 2 T , ui is the vertex with the smallest label in V n frxg. If wu stillcontains a letter ux (which must be di�erent from ui because ui =2 W ), not all ofthe words wu can be empty or Fu still contains an edge: Either ui and ux belong



3. CODES 46to di�erent components of Fu, then wu contains at least one vertex. Or, ui and uxbelong to the same component of Fu.Hence, before the last letter of the word wr can be removed, all words exceptwr and all forests except Fr must be empty. The word wr cannot contain letters ofHr, hence it must be empty, too. (Otherwise, supposing Hr contained a letter ux,not all of the words wu would be empty, or Fu would still contain an edge.) Now wecan distinguish between two possible cases:Suppose wr = ry, which is not the root. Then ry belongs { as we required { tothe component of Fr that contains the root. But edges from this component can beremoved only after the removal of ry.Now suppose that wr contains only the root and there is an edge in a componentT0 of Fr which does not contain the root. But T0 should contain no edges anymore,because all letters ry except those in T0 are in V nW 0, but none of the letters of Huwith u 6= r, because all the other words are already empty. This is a contradiction.)
 and (
 are inverse to each other:We only have to check that each step of )
 is the inverse of the correspondingstep of (
. This is trivial.This correspondence makes it possible to compute the number of spanning treesand forests of G [H1;H2; : : : ;Hp]:Theorem 3.5. For (di)graphs G and Hv, where v 2 G, and an arbitrary vertexr 2 G [H1;H2; : : : ;Hp] we havetr(G [H1;H2; : : : ;Hp])= � Yv2V(G) jHv jXi=1 fi(Hv)� Xu2V(G)(u;v)2E(G) jHuj�i�1� � XT2Tr(G) Yv2V(G) jHvjdT (v)�1 :For (di)graphs G and Hv, where v 2 G, and a set of roots R = Su2U V(Hu), whereU � V(G) we havefR(G [H1;H2; : : : ;Hp])= � Yv2V(G)nR jHv jXi=1 fi(Hv)� Xu2V(G)(u;v)2E(G) jHuj�i�1� � XF2FR(G) Yv2V(G) jHvjdoF (v) ;where fi(F ) denotes the number of forests in F with i roots.Proof. We show the statement about the number of spanning trees �rst: Givena set of rooted forests Fv of Hv, where v 2 V(G), there areYv2V(G)� Xu2V(G)(u;v)2E(G) jHuj�c(Fv)�1



3. CODES 47sets of words wv, where v 2 V(G), given a tree F of G, rooted in r, there areYv2V(G)nfrg jHvjdoF (v) � jHrjdoF (r)�1sets of words wv, where v 2 V(G). Each combination of those sets corresponds to atree of G [H1;H2; : : : ;Hp]. Hencetr(G [H1;H2; : : : ;Hp])= � XFv2F(Hv) Yv2V(G)� Xu2V(G)(u;v)2E(G) jHuj�c(Fv)�1� � XF2Tr(G) Yv2V(G) jHvjdF�1 ;which is what we wanted to show. The statement about the number of spanningforests follows by Theorem 4.1 in Chapter 3. See also the remark just after Theo-rem 3.3.Using this awkward looking, but powerful theorem we can deal with quite a fewfamilies of graphs. For multipartite graphs we can simplify the second factor of theformula a little bit. For doing so we need a simple lemma:Lemma 3.6. The number of occurrences of a letter v in the Pr�ufer code { evenin its generalized form as in Theorem 3.3 { of some forest F equals dF (v) if v is aroot, dF (v)� 1 otherwise.Remark. We consider the elements of the set W as described in the proof ofTheorem 3.5 as elements of the generalized Pr�ufer code.Proof. Consider F as a directed forest with every edge directed away from thecorresponding root. Each time a successor of a vertex v is removed, the letter v isadded to the code. Now the result follows, as every vertex v in a forest F has doF (v)successors.Proposition 3.7. Let G be any bipartite graph with parts G1 and G2 andjHvj = (h1 for v 2 G1h2 for v 2 G2:Furthermore, let r be a vertex of G [H1;H2; : : : ;Hp]. Then we havetr(G [H1;H2; : : : ;Hp])=� Yv2G1 h1Xi=1 fi(Hv)(h2dG(v))i�1�� Yv2G2 h2Xi=1 fi(Hv)(h1dG(v))i�1� � h1p2�1h2p1�1 � tr(G);where p1 = jV(G1)j and p2 = jV(G2)j.
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Figure 2. The graph P6 [O2; O3; O2; O3; O2; O3]Proof. Observe that for v 2 G1 we haveXu2V(G)(u;v)2E(G) jHuj = h2dG(v);and similarly for v 2 G2. Hence, the �rst factor in the formula given by Theorem 3.5can be split up into two factors, as above.We denote the parts of any tree T of G by T 1 and T 2. Then we can rewrite thesecond factor in the formula given by Theorem 3.5 as follows:XT2Tr(G) Yv2V(G) jHvjdT (v)�1 = XT2Tr(G) Yv2V(G1)h1dT1 (v) Yv2V(G2) h2dT 2(v)= XT2Tr(G) h1Pv2V(G1) dT1 (v)h2Pv2V(G2) dT2 (v)= XT2Tr(G) h1p2�1h2p1�1= h1p2�1h2p1�1 � tr(G);which is what we wanted to show.Example 3.8. As an example we will compute the number of spanning trees ofthe graphs Pp [Ol; Om; Ol; Om; : : : ]. An example is depicted in Figure 2. Both P2pand P2p+1 are bipartite graphs, therefore we can use Proposition 3.7:t(P2p [Ol; Om; Ol; Om; : : : ])= lXi=1 fi(Ol)(2m)i�1!p�1 lXi=1 fi(Ol)mi�1!� mXi=1 fi(Om)(2l)i�1!p�1 mXi=1 fi(Om)li�1! � lp�1mp�1:The number of rooted forests of Om with i roots fi(Om) is nonzero only for i = m,in this case it is equal to 1. Therefore,t(P2p [Ol; Om; Ol; Om; : : : ]) = 2(l+m�2)(p�1)mlp�1lmp�1:
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Figure 3. The complete multipartite graph K3;2;1Similarly, for P2p+1 [Ol; Om; Ol; Om; : : : ] we gett(P2p+1 [Ol; Om; Ol; Om; : : : ])= lXi=1 fi(Ol)(2m)i�1!p�1 lXi=1 fi(Ol)mi�1!2� mXi=1 fi(Om)(2l)i�1!p � lp�1mp=2(l+m�2)(p�1)+m�1mlp�1+llmp�1=2m�1ml � t(P2p [Ol; Om; Ol; Om; : : : ]):Proposition 3.9. Let G be the complete multipartite graph Kn1;n2;:::;np. Thisgraph can be expressed as Kp [On1 ; On2 ; : : : Onp ], where On denotes the graph consist-ing of n isolated vertices. Let Nu =Pv2V(Onu ) jHvj and N =Pv2V(Kn1 ;n2;:::;np ) jHvj.Then we havet(G [H1;H2; : : : ;HP ni ])= � Yv2V(G) jHvjXi=1 fi(Hv)� Xu2V(G)(u;v)2E(G) jHuj�i�1� �Np�2 � Yu2V(Kp)�N �Nu�nu�1:Proof. Any spanning tree T 0 of G corresponds by the bijection to a treeT 2 T(Kp), a set of words w1, w2, : : : , wp, each having doT (v) letters in V(Onv ),and a set of words w1, w2, : : : , wp with each word wv having nv � 1 letters inSu2V(G);u6=v V(Onu). By Pr�ufer's (original) encoding, �nally, T corresponds to ap� 2 letter word w. The forests Fv consist of isolated vertices only.Hence we can rewrite the second factor of the formula:



3. CODES 50XT 02T(G) Yv2V(G) jHvjdT 0(v)= XT2T(Kp)w1;w2;:::;wp Xw1;w2;:::;wp Yv2V(G) jHvj#v in w1;w2;:::;wpand w1;w2;:::;wp= � XT2T(Kp)w1;w2;:::;wp Yv2V(G) jHvj#v in w1;w2;:::;wp�� � Xw1;w2;:::;wp Yv2V(G) jHvj#v in w1;w2;:::;wp�= � XT2T(Kp) Yu2V(Kp)Xwu Yv2V(Onu ) jHvj#v in wu�� � Yu2V(Kp)Xwu Yv2Sk 6=uV(Onk ) jHvj#v in wu�= �Xw Yu2V(Kp)� Xv2V(Onu ) jHvj�#u in w�� � Yu2V(Kp)� Xv2Sk 6=uV(Onk ) jHvj�nu�1�= � Xu2V(Kp)� Xv2V(Onu ) jHvj�p�2�� � Yu2V(Kp)� Xv2Sk 6=uV(Onk ) jHvj�nu�1�= � Xv2V(Kn1;n2;:::;np ) jHvj�p�2 � � Yu2V(Kp)� Xv2Sk 6=uV(Onk ) jHvj�nu�1�= Np�2 � Yu2V(Kp)�N �Nu�nu�1:Example 3.10. The complete multipartite graph Kp1;p2;:::;pn hast(Kn [Op1 ; Op2 ; : : : Opn ]) = pn�2 nYi=1(p� pi)pi�1spanning trees, where p =Pni=1 pi.Clearly, the major di�culty we encounter when using Theorem 3.5 lies in thecalculation of the numbers fi(H). Still, for some simple families of graphs it ispossible to obtain nice formulas:



3. CODES 51Proposition 3.11. The number of rooted forests with i components of the pathPn is fi(Pn) = �n+ i� 12i� 1 �:Proof 1. fi(Pn) = Xk1;k2;:::;kik1+k2+���+ki=nkj�1 k1k2 � � � ki= hxni� x(1� x)2�i= hxn�ii 1(1 � x)2i= �n+ i� 1n� i �:Proof 2. Draw n + i � 1 dots and choose n � i of them to be edges. The2i � 1 dots which were not selected then alternately represent a root (i items) andseparation of two components (i � 1 items). Hence a rooted forest of Pn with icomponents can be represented by a selection of n� i in n+ i� 1 items.Proposition 3.12. The number of rooted forests with i components of the circleCn is fi(Cn) = ni �n+ i� 12i� 1 �:Proof. Suppose the vertices of the path are numbered from 0 to n� 1, so that(i; i + 1) is an edge of Pn for i 2 f0; 1; : : : ; n� 2g. Similarly, let the vertices of thecircle Cn be numbered from 1 to n, so that (i; i + 1 mod n) is an edge of Cn fori 2 f0; 1; : : : ; n� 1g.Let FP be a rooted forest of the path Pn with i roots, and select a vertex u. Wecan then construct a rooted forest FC of the circle Cn with one component selectedas follows: Let (i; i+1 mod n) be an edge of FC if and only if (u+i mod n; u+i+1mod n) is an edge of FP . Finally, select the component of FC which contains vertexn� u.Conversely, let FC be a rooted forest of the circle Cn with i roots, and selectone component. Let v be the smallest vertex in this component. Let (i; i+1) be anedge of FP if and only if (v + i mod n; v + i+ 1 mod n) is an edge of FC . Finally,select vertex n� v in FP .Proposition 3.13. The number of rooted forest with i components of the starSn is fi(Sn) = (n� i+ 2)� ni� 1�:



3. CODES 52Proof. Select i� 1 vertices from f1; 2; : : : ; ng which shall be isolated vertices.The other n�i+2 vertices give the ith component, in which a root has to be selected.Proposition 3.14. The number of rooted forests with i components of the com-plete graph Kn is fi(Kn) = nn�i�n� 1i� 1�:Proof. This is Corollary 3.2:fi(Kn) = �ni�inn�i�1:Example 3.15. The number of spanning trees of the fan Fn can be calculatedas follows: t(K2 [K1; Pn]) = nXi=1 fi(Pn)= nXi=1 �n+ i� 12i� 1 �:Replacing i with n� i we get t(Fn) = n�1Xi=0 � 2n� 1� i2n� 1� 2i�= n�1Xi=0 �2n� 1� ii �= f2n�1;where fn is the nth Fibonacci number.Example 3.16. The wheel Wn hast(K2 [K1; Cn]) = nXi=1 fi(Cn)= nXi=1 ni �n+ i� 12i� 1 � spanning trees.



CHAPTER 5Algebraic ProofsThis chapter covers the most powerful methods for determining the number ofspanning trees. The famous Matrix-Tree-Theorem and the theory of graph spectraenables us to obtain very general theorems.1. The Matrix-Tree-TheoremThe following theorem is probably the most important theorem when count-ing spanning trees. Among the �rst who proved it were Kirchho� [24] in 1847,Sylvester [37] in 1855 and Borchardt [7] in 1860.Matrix-Tree-Theorem. Given a (weighted) (di)graph G, its number of span-ning forests can be computed by the formulafR(G) = det(CRc):Here C denotes the Kirchho� matrix or Laplacian of G and CRc is the principalminor of C that we obtain by deleting the rows and columns indexed by R.Proof. Consider G as a weighted complete digraph Kp so that for any pair ofvertices u and v there is exactly one arc (u; v) from u to v which has weight au;v.(See De�nition 1.3)By the de�nition of the determinant we havedet(CRc) = X� permutationof the vertices in V(Kp)nR sgn � Yv2V(G)nR c�(v);v :Substituting �u;vdi(v)� au;v for cu;v we arrive atdet(CRc) =X� sgn � Yv:�(v)=vXu au;v Yv:�(v)6=v(�a�(v);v)= X(�;f) sgn � Yv:�(v)=v af(v);v Yv:�(v)6=v(�a�(v);v);where f is any function from the set of �xed points of � into V(Kp).It is well known that sgn � = (�1)p�jRj+#(cycles in �), furthermore we have#(�(v) 6= v) = p� jRj �#(trivial cycles in �), hencedet(CRc) = X(�;f)(�1)#(nontrivial cycles in �) Yv:�(v)=v af(v);v Yv:�(v)6=v a�(v);v :Now, (�; f) de�nes a spanning subdigraph H of Kp containing arcs from �(v) to vfor �(v) 6= v and from f(v) to v otherwise, for any v 2 V(Kp) n R.53



1. THE MATRIX-TREE-THEOREM 54Because either f or �, but not both, apply to a vertex v 2 H we havediH(v) = (1 for v 2 V(Kp) n R0 otherwise:Hence any circuit in H must be a cycle and all cycles in H are disjoint. Furthermore,any cycle in H must either belong completely to � or to f . Thus we can de�ne thefollowing involution on the set of all pairs (�; f):If there is at least one cycle in (�; f), take the cycle containing the smallestvertex and put it to � if it belonged to f , and vice versa.Clearly, this involution preserves weight but alternates sign, hence all termsin the sum which contain cycles cancel. Therefore only terms with � = identityactually count. In all the other terms, f contains no cycles, consists of p� jRj arcs,and exactly the vertices in R have indegree zero, which implies that it must be aforest with roots in R. This proves the theorem.Remark. We remarked after Proposition 1.6 in Chapter 2, Section 1, thatin [13] a Laplacian matrix for vertex-weighted graphs is de�ned. The principalminor obtained from this matrix by deleting the row and column corresponding tovertex r counts the vertex-weighted spanning trees rooted at r of the graph, wherethe weight of a tree T is w(T ) = Y(u;v)2E(T )w(u)w(u; v):The following important corollary for Eulerian digraphs is easily deduced fromthe Matrix-Tree-Theorem. Note that we proved a special case already in Chapter 3,Section 3.Corollary 1.1. In Eulerian digraphs, the number of spanning trees does notdepend on the root chosen.Proof. Consider the Laplacian matrix of an Eulerian digraph G on p vertices.We have to show that there are as many spanning trees rooted at vertex 1, as thereare spanning trees rooted at vertex 2. By the Matrix-Tree-Theorem we havet1(G) = det0BBB@Ppv=1 a2;v �a2;3 : : : �a2;p�a3;2 Ppv=1 a3;v... . . .�ap;2 Ppv=1 ap;v1CCCA :Adding all columns but the �rst to the �rst column we obtaint1(G) = det0BBB@a2;1 �a2;3 : : : �a2;pa3;1 Ppv=1 a3;v... . . .ap;1 Ppv=1 ap;v1CCCA :



1. THE MATRIX-TREE-THEOREM 55Finally, we add all rows but the �rst to the �rst row. Because G is Eulerian we havePpv=1 au;v =Ppv=1 av;u. Therefore, we obtaint1(G) = det0BBB@Ppv=1 a1;v a1;3 : : : a1;pa3;1 Ppv=1 a3;v... . . .ap;1 Ppv=1 ap;v1CCCA= det0BBB@Ppv=1 a1;v �a1;3 : : : �a1;p�a3;1 Ppv=1 a3;v... . . .�ap;1 Ppv=1 ap;v1CCCA = t2(G):There is an alternative approach to the Matrix-Tree-Theorem { relying on thecycle and cocycle spaces of a graph { which shall lead us towards a more generalresult for weighted graphs. (For more details on these matters see [3]).Recall that the Kirchho� matrix C of an undirected weighted graph G withoutloops can be expressed as BXBt, where B is the incidence matrix of G and X is itsweight matrix. Thus, we have t(G) = det(BXBt)rc ;where r is an arbitrary vertex of G. In the following we will show, that this equationholds for any matrix B, whose rows form an integral basis of the lattice of integercocycles of an arbitrary orientation of G. We will �rst give the necessary de�nitions:Definition 1.2. Let G be a graph and let ~G be an arbitrary orientation ofG. Consider the linear space C1( ~G;R) of real valued functions on the edges of~G. The standard inner product of two elements x and y of C1( ~G;R) is hx; yi =Pe2E(G) x(e)y(e).Let E be a subgraph of G and let ~E be an orientation of E. Then we canrepresent ~E as an element � ~E of C1( ~G;R) as follows:� ~E(e) = 8><>:+1 if the orientation of e is the same in ~E as in ~G�1 if the orientation of e is di�erent in ~E and in ~G0 if e is not an element of E.We will call two edge sets E1 and E2 linearly independent, if the correspondingelements � ~E1 and � ~E2 are linearly independent.Recall that a cycle is a closed path, i.e., a walk with all vertices distinct, andcontains at least one edge. A cocycle is a minimal cutset, i.e., a minimal set of edgesof G, whose removal from G increases the number of components of G.For a cycle C of G let ~C be an orientation of C, so that all vertices have indegree cycle spaceand outdegree equal to 1. Then the cycle space C of a digraph ~G, is the linearsubspace of C1( ~G;R) generated by the functions � ~C , where C is a cycle of G.Similarly, let C� be a cocycle of G and let V1 and V2 be the vertex sets the edges cocycle spaceof C� are incident to. Let ~C� be the orientation of C�, so that all edges of C� have



1. THE MATRIX-TREE-THEOREM 56their tail in V1 and their head in V2. The cocycle space C� of a digraph ~G, is thelinear subspace of C1( ~G;R) generated by the functions � ~C� , where C� is a cocycle ofG. Note, that the rows of the incidence matrix of a graph are equal to ��~v� , wherev� is the cocycle de�ned by all edges incident to G.Clearly, for any two orientations of a graph, the corresponding cycle and cocyclespaces are isomorphic. Hence, we can informally speak of the cycle space of a graphG, instead of the cycle space of an orientation of G.The following lemma reveals the connection between the cycle and the cocyclespaces of a graph and its incidence matrix:Lemma 1.3. Let B be the incidence matrix of an arbitrary orientation ~G of agraph G. Then the cycle space C is the kernel of B, and the cocycle space C� is itsorthogonal complement with respect to the standard inner product of C1( ~G;R). Thedimension of C is q � p + c, where q is the number of edges, p is the number ofvertices and c is the number of components of G. The dimension of C� equals p� c.Remark. The number q � p + c is often called the cyclomatic number of G. (co)cyclomaticnumberSimilarly, p� c is called the cocyclomatic number of G.Proof. First, we show that there is a linearly independent set of q�p+c cyclesand a linearly independent set of p � c cocycles of G. In fact, given any spanningforest F of G, the so called `fundamental' cycles (respectively cocycles) associatedwith F are linearly independent:Let e be an edge of the forest F , and let T be the component of F which containse. Then the removal of the edge e from F separates the set of vertices of T intotwo parts, one containing the head of e, the other its tail. The edges incident toboth sets form a cocycle C� of G, so that for any edge f 2 E(F ), � ~C�(f) is equalto �1 if e = f and zero otherwise. Thus we obtain a linearly independent set ofp � c cocycles, one for each edge e that is not in F . These cocycles are called thefundamental cocycles associated with F .Similarly, for any edge e 2 E(G) nE(F ), the subgraph of G induced by the edgesof F and the edge e contains exactly one cycle C, a so called fundamental cycle ofG. For any other edge f 2 E(G)nE(F ), � ~C(f) equals �1 if e = f and zero otherwise.Again, the set of q � p+ c cycles obtained is linearly independent.Next, we prove that C � KerB and C� � (KerB)�:Let C be a cycle of G. Then, for any vertex v 2 V(G) we haveh� ~C ; �~v�i = 0;where �~v� is the cocycle de�ned by the edges incident to v: We only have to considerthe case where v is a vertex traversed by the cycle. Otherwise, the inner product istrivially zero. It is easy to check that in all four remaining cases the inner productevaluates to zero, too.Hence, as �~v� equals the row of B corresponding to vertex v, the product B� ~Cis the zero vector, that is, �C is in the kernel of B.Similarly, let C� be a cocycle of G and let V be one of the sets of verticesthe edges of C� are incident to. Then � ~C� = Pv2V �~v� . Furthermore, for z 2



1. THE MATRIX-TREE-THEOREM 57KerB and an arbitrary vertex v of G, the inner product of z and �~v� vanishes.Consequently, hz; � ~C�i is equal to zero as well, which implies that � ~C� is in theorthogonal complement of KerB.It remains to show, that dimKerB = q� p+ c and dim(KerB)� = p� c: Let xbe any vector with p components, and for any edge e, let h(e) be its head and t(e)its tail in the (arbitrary) orientation of G. Then we haveBtx(e) = x(h(e)) � x(t(e)):Hence, x is in the kernel of Bt, if and only if x is constant on each component of G,which implies that dimKerBt = c.Bt is a function de�ned on the vertices of G, therefore we havedim ImBt = p� dimKerBt = p� c:By the `row rank=column rank' theorem, dimImB = dimImBt = p� c.Now consider the orthogonal decompositionC1( ~G;R) = KerB� (KerB)�:By standard results of linear algebra we obtaindimKerB = dimC1( ~G;R) � dim ImB = q � p+ c;and dim(KerB)� = p� c;which concludes our proof.Up to this point we have considered linear spaces de�ned on a graph. We will nowturn our attention to the corresponding lattices:Definition 1.4. Consider the Abelian group C1( ~G;Z) of integer valued func- lattice ofinteger(co)cyclestions de�ned on the edges of ~G. The lattice of integer cycles is the Abelian groupCI = C \ C1( ~G;Z). Similarly, the lattice of integer cocycles is the Abelian groupC�I = C� \ C1( ~G;Z).An integral basis B of a lattice L is a basis of the lattice so that each element integral basisL 2 L can be written as an integral linear combination of the elements of the basisB: L =Xi �ibi;where L 2 L, bi 2 B and �i 2 Z.The following fundamental lemma is the foundation of the generalized form ofthe Matrix-Tree-Theoremfor graphs:Lemma 1.5. Let G be a graph and let ~G be an arbitrary orientation of G. LetM (resp. M�) be a matrix, so that its rows form an integral basis of the lattice ofinteger cycles (cocycles) of ~G. Let E � E(G) be a set of q � p + 1 (p � 1) edgesof G and let ME be the restriction of M to the columns corresponding to E. ThendetME = 0 (detM�E = 0) if E contains a cocycle (cycle) of G and detME = �1(detM�E = �1) if E is a cotree (spanning tree) of G.



1. THE MATRIX-TREE-THEOREM 58Proof. Let M be an integral basis of the lattice of integer cycles of G. We �rstshow that ME is singular, if E contains a cocycle C� of G: Consider the element� ~C� of the cocycle space as in De�nition 1.2 and its restriction � ~C���E to the edgesin E. Then ME � ~C���E =M � ~C� = 0:The �rst equation holds, because � ~C� is nonzero on the edges of E only, and thesecond equation holds, because the inner product of a cycle { i.e. a row of M { witha cocycle is zero by Lemma 1.3.The vector � ~C���E is not the zero vector, therefore the matrix ME must besingular.On the other hand, if E does not contain a cocycle, the edges of E form a cotreeof G. Consider the fundamental cycles associated with the spanning tree Ec, asexplained in the proof of Lemma 1.3. Let � ~Ce be the function corresponding to thefundamental cycle determined by the edge e 2 E. These functions form a basis �of the cycle space of G. As M also is a basis of the cycle space, there is a matrix T,so that M = T� and thereforeME = (T �)E = T �E:For any two edges e and f in E, we have� ~Ce(f) = (1 if e = f0 otherwise:Thus, the determinant of �E equals �1. Because T must be non-singular, too, sois ME .In fact, � even is an integral basis of the lattice of integer cycles: Let C be anyelement of CI . As � is a basis of the cycle space, we haveC =Xe2E �e� ~Ce ;where �e 2 R for e 2 E. Evaluating at an edge f 2 E we obtain C(f) = �f , hencethe �e, e 2 E are integers.Finally note that every matrix T transforming an integral basis of the latticeof integer cycles into another must have determinant equal to �1. This follows,because T has only integral entries { and so has its inverse. This in turn impliesthat detME = �1, which is what we wanted to show.An analogous argument shows the statement concerning an integral basis ofthe cocycle space: We only need to replace the word cycle with the word cocycle,spanning tree with cotree and vice versa.The proof of the generalized Matrix-Tree-Theorem for graphs requires the followingwell known lemma from the theory of determinants:Cauchy-Binet-Theorem. For (n�m) matrices A and B we havedet(A Bt) =XK detAK detBK ;where n < m and K ranges over all n-element subsets of f1; 2; : : : ;mg.



1. THE MATRIX-TREE-THEOREM 59Proof. Let A = (ai;j) i=1:::nj=1:::m and B = (bi;j) i=1:::nj=1:::m. Using the de�nition of thedeterminant we getdet(A Bt) = X� permutation of [n] sgn � � nYi=1 mXj=1 ai;jb�(i);j= X�f :[n]7![m] sgn � � nYi=1 ai;f(i)b�(i);f(i):We de�ne w(�; f) = sgn � �Qni=1 ai;f(i)b�(i);f(i) and get= X�f :[n]7![m]f injectivew(�; f) + X�f :[n]7![m]f not injectivew(�; f):Next we show that the �rst sum equals PK detAK detBK :X�f :[n]7![m]f injective sgn � � nYi=1 ai;f(i)b�(i);f(i)= XK�[m]jKj=n X�f :[n]7!Kf injective sgn � �Yi ai;f(i)b�(i);f(i)=XK Xf :[n]7!Kf injective sgn f � nYi=1 ai;f(i) � �X� sgn � sgn f � nYi=1 b�(i);f(i)�=XK detAK detBK :Finally we have to show that the second sum vanishes. To achieve this we de�nean involution on the pairs (�; f) where � is a permutation of [n] and f : [n] 7! [m]is not injective: Let � be the smallest number so that f(k) = f(l) = � for distinctk and l. Let (k; l) be minimal in f(k; l); f(k) = f(l) = �g with respect to thelexicographic ordering. De�ne '(�; f) = (� � (k; l); f). Clearly '2 = " andw('(�; f)) = sgn (� � (k; l)) � nYi=1 ai;f(i)b(��(k;l))(i);f(i)= �sgn � nYi=1 ai;f(i)b�(i);f(i)= �w(�; f):This proves the theorem.We are now ready to prove the generalized Matrix-Tree-Theorem for graphs:



1. THE MATRIX-TREE-THEOREM 60Theorem 1.6 (Maurer 1976). Let G be a connected graph and letM (resp. M�)be a matrix, so that its rows form an integral basis of the lattice of integer cycles(cocycles) of G. Then the number t(G) of spanning trees of G ist(G) = det �M� X (M�)t� = �det� MM� X:�Similarly, the number c(G) of cotrees of G isc(G) = det �MXMt� = �det� M�MX:�Remark. Note that for unweighted graphs, t(G) = c(G).Proof. The �rst equation follows from the Cauchy-Binet-Theorem and fromLemma 1.5: det �M� X (M�)t� =XK det(M�KXK) det(M�K)t=XK detXK(detM�K)2:By Lemma 1.5 we know that detM�K = �1 whenever K � E(G) corresponds to aspanning tree and zero otherwise. Hence we havedet(M� X (M�)t) = XK spanning tree detXK :To prove the second equation, consider the square matrix P = � MM� �. Calculat-ing the determinant of PPt we getdet(P Pt) = det�MMt MM�tM� Mt M� M�t�= det�MMt 00 M� M�t� = �det(MMt)�2 :Hence detP = �det(MMt). Now consider the productdet�� MM� X�P� = det� MMt MM�tM� XMt M� XM�t�= det� MMt 0M� XMt M� XM�t� = �detP � t(G):Provided that detP 6= 0, we get the desired result by dividing both sides by detP.The expressions for the number of cotrees of G follow similarly.The question remains, how to get an integral basis of the lattice of integer cycles(cocycles). In the proof of Lemma 1.5 we have already seen that { informally spoken{ the fundamental cycles associated with some spanning forest form such a basis.One might expect (see [36]) that any set of q � p+ 1 linearly independent cycles isan integral basis. However, as the following example shows, this is not true:
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>1 > 6 >2> 4>3>5
An orientation of thecomplete graph K4
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>1 >2 >4>5
A cycle x b
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>1 >6 > 4>3A cycle y b
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> 6 >2>3>5
A cycle zFigure 1Example 1.7. Consider the orientation of the complete graph on four verticesK4 depicted in Figure 1. Then the cycles x, y and z indicated in the �gure arecertainly linearly independent, but they do not form an integral basis of the latticeof integer cycles! Consider the matrix which has rows �x, �y and �z:0B@ 1 2 3 4 5 6x 1 �1 0 �1 �1 0y 1 0 1 1 0 �1z 0 �1 1 0 1 11CA:The determinant of any submatrix corresponding to a cotree is equal to �2.However, we can show the following useful fact:Lemma 1.8. Let C1, C2, : : : , Cc be a set of subgraphs of a graph G, wherec is the (co)cyclomatic number of G. Suppose that the corresponding functions� ~C1 ; � ~C2 ; : : : � ~Cc form a basis of the (co)cycle space. If for any two subgraphs Ciand Cj, the orientation of edges common to both is always the same, or alwaysdi�erent, then the corresponding functions form an integral basis of the lattice ofinteger (co)cycles of G.Proof. Let C be an element of the lattice of integer (co)cycles of G. Then wecan express C as a linear combination of the functions �e, e 2 E(G), with �e(f) = 1,



1. THE MATRIX-TREE-THEOREM 62if e = f and �e(f) = 0 otherwise: C = Xe2E(G) �e�e;(�)where �e 2 Z for e 2 E(G).We show by induction on the number of edges of G, that C is a Z-linear combi-nation of the functions �Ci , i 2 f1; 2; : : : ; cg.If G has no edges, the conclusion is trivial. Suppose that there is an edgee 2 E(G) that occurs only in one subgraph C0. Then �C0(e) = �1 and �Ci(e) = 0for i 6= 0. Consider the graph Gjec , which is obtained by deleting this edge from G.Because e occurred only in the subgraph C0, the set of functions �Ci , i 6= 0 is a basisof its (co)cycle space.Now express C as an R-linear combination of the functions �Ci :C = q�p+1Xi=1 �i�Ci ;where �i 2 R for i 2 f1; 2; : : : ; cg. There are now two possible cases to distinguish:if �0 = 0, we can consider C as an element of the lattice of integer (co)cycles ofthe reduced graph Gjec . By the induction hypothesis then, C can be expressed as aZ-linear combination of the �Ci .Otherwise, if �0 6= 0, then C 0 = C � �0�C0 is an element of the lattice of integer(co)cycles of Gjec . By Equation (�) above we obtain�0 = 1�C0(e) (C(e)� C 0(e)) = �e�C0(e) :Since �e 2 Z and �C0(e) = �1, �0 is an integer, too. By the induction hypothesis,C 0 can be expressed as a Z-linear combination of the �Ci . Therefore, C = C 0+�0�C0is also a Z-linear combination of the �Ci .In general, there might not be an edge that occurs only in one of the subgraphsCi. In this case, let C0 be any of the subgraphs in which e occurs and let �C0i = �Ci��0�i�C0 for i 2 f1; 2; : : : ; cg, i 6= 0. Because we required that edges common to C0and Ci are always traversed in the same direction or always in the opposite direction,�C0i is again an element of the lattice of integer (co)cycles with entries in f0;�1g.Since the edge e occurs only in C0, but not in C 0i for i 2 f1; 2; : : : ; cg, we can applythe �rst part of this proof to show that the set of functions �C0i for i 2 f1; 2; : : : ; cg,i 6= 0 together with �C0 is an integral basis. Because of �C0i = �Ci��C0 , the functions�Ci with i 2 f1; 2; : : : ; cg form an integral basis as well.This lemma shows, that not only the fundamental cocycles associated with a span-ning tree, but also the cocycles corresponding to the vertices of G form an integralbasis of the lattice of integer cocycles. Similarly, for any planar graph G, the cyclescorresponding to the faces of G form an integral basis of the lattice of integer cyclesof G. This re
ects the fact, that a planar graph and its dual have the same numberof spanning trees, as the incidence matrix of G� coincides with this basis.



2. SPECTRA OF GRAPHS 632. Spectra of GraphsIt is an astonishing fact, that the spectra of the various matrices associated witha graph contain a lot of structural information of the graph. In particular, also thespanning tree number is determined by the spectra of those matrices. This enablesus to apply methods known from linear algebra and the theory of spectra to theproblem of counting the spanning trees of a graph.Definition 2.1. The (ordinary) spectrum of a (di)graph G consists of the zeros ordinary,C andQ-spectrumof its characteristic polynomial PG(�) = det(�I � A), where A is the adjacencymatrix of G. The C-spectrum consists of the zeros of CG(�) = det(�I�C), whereC is the Kirchho� Matrix of G, and the Q-spectrum of a graph without isolatedvertices consists of the zeros of QG(�) = det(�I � D�1A) = det(�I � AD�1) =det(�I�D�1=2AD�1=2), where D is the degree matrix of G.Remark. Q(A) = D�1A is called stochasticization of A, as it is the matrixobtained from A by dividing each entry by the column-sum of the column it is in.Remark. Clearly, for r-regular digraphs, these spectra are all equivalent:PG(�) = (�1)pCG(r � �) = rpQG(�=r):Recall, that a graph is semiregular, if it is bipartite and the vertices of each parthave the same degree. Surprisingly, for semiregular graphs the ordinary and theQ-spectrum are equivalent as well: Denote the parts of G by X and Y , so thatdG(x) = r1 for x 2 V(X) and dG(y) = r2 for y 2 V(Y ). If we order the vertices ofG so that all vertices in X precede those in Y , then the adjacency and the degreematrix of G have the formAG = � 0 AAt 0� and DG = �r1I 00 r2I� respectively.Hence we have QG(�) = det(�I�D�1=2G AGD�1=2G )= det �I�� 0 1=pr1r2A1=pr1r2At 0 �!= det(�I� 1=pr1r2AG)= 1p(r1r2)pPG(pr1r2 �):Lemma 2.2. For any (n � n) matrix M the characteristic polynomial can beexpressed in terms of determinants of principal minors of the matrix:det(�I�M) = nXl=0(�1)n�l�l XK�[n]jKj=l detMKc:



2. SPECTRA OF GRAPHS 64Proof. By the de�nition of the determinant we havedet(�I�M) = X� permutationof [n] sgn � Yi2[n](�I�M)i;�(i)= X� permutationof [n] sgn � nXl=0 XK�[n]jKj=l Yi2K(�I)i;�(i) Yi=2K(�M)i;�(i):Note that (�I)i;�(i) is nonzero only if �jK = idK ; in this caseQi2K(�I)i;�(i) evaluatesto �l. Hence we get: det(�I�M) = nXl=0 XK�[n]jKj=l �l det(�MKc);which is what we wanted to show.Theorem 2.3. The number of spanning trees of a graph or Eulerian digraph canbe expressed in terms of its di�erent spectra. When A is the adjacency matrix of G,C the Laplacian matrix of G and Q the stochasticization of A, we havet(G) = 1p P 0G(�)���=r = 1p Y�6=reigenvalue of A(r � �)(1)for r-regular graphs and Eulerian digraphs, andt(G) = pr1r22q �r1r2� p1�p22 P 0G(�)���=pr1r2(2) = 12p1 �r1r2� p1�p2�12 Y�6=pr1r2eigenvalue of A(pr1r2 � �)for semiregular graphs and semiregular Eulerian digraphs with degrees r1 and r2and parts of size p1 and p2, where q denotes the sum of the edge-weights of G.Furthermore, we havet(G) = (�1)p�1p C 0G(�)���=0 = 1p Y�6=0eigenvalue of C�(3)and t(G) = Qpi=1 di2q Q0G(�)���=1 = Qpi=1 di2q Y�6=1eigenvalue of Q(1� �)(4)



2. SPECTRA OF GRAPHS 65for graphs and Eulerian digraphs. Again, q denotes the sum of the edge-weights ofG. Proof. By Lemma 2.2 we have for any (p� p) matrix M(det(�I�M))0���=0 = (�1)p�1 pXk=1 detMkc:Using the BEST-Theorem (see Corollary 1.1) and the Matrix-Tree-Theorem, Equa-tions (1) and (3) follow. For showing Equation (4), observe thatQ0G(�)���=1 = �det(�I�D�1A)�0����=1= �det �(�+ 1)I�D�1A��0����=0= �det(�I�D�1C)�0����=0 :Equation (2) follows from the equivalence of the ordinary spectrum and the Q-spectrum described in the remark at the beginning of this section.Remark. In some cases the following observation may help, too: Every graphcan be `regularised' by adding r � d(v) loops to vertices v with degree lower thanr = maxv2V(G) dG(v). Obviously, the resulting graph G0 has the same number ofspanning trees as G. Unfortunately though, most operations on graphs produce adi�erent result when G is altered this way. Anyway, we haveCG(�) = (�1)pPG0(r � �)= (�r)pQG0(1� �=r):Note that the C-spectrum remains invariant when loops are added to the graph.Sometimes graphs occur that are `nearly k-regular', that is, all vertices exceptof one { r { have the same degree k. In this case we havet(G) = det(DG �AG)rc = det(kI�Arc)= PGjrc (k):Note that in general Gjrc is not regular!The following well known lemmas will be very useful:Lemma 2.4. If A is a nonsingular, square matrix, we havedet�A BC D� = det(A) det(D�CA�1B):Lemma 2.5. For (n�m) matrices A and B we havedet(�I�ABt) = �n�m det(�I�BtA):



2. SPECTRA OF GRAPHS 66Proof. Consider the matrices� I BtA �I� and ��I ABt I� :Clearly, they have the same determinant. By Lemma 2.4 the �rst evaluates todet(�I�ABt), the second to �n�m det(�I�BtA).Lemma 2.6. For a bipartite graph G we havePG(�) = (�1)pPG(��) andQG(�) = (�1)pQG(��):Proof. As G is bipartite, its adjacency matrix has the form AG = ( 0 AAt 0 ).Suppose the parts of G have p1 and p2 vertices respectively. Thendet(�I�AG) = det��Ip1 �A�At �Ip2�= (�1)p1 det���Ip1 A�At �Ip2�= (�1)p1+p2 det���Ip1 �A�At ��Ip2�= (�1)p det(��I�AG):The statement about the Q-spectrum follows just as easy, it is only messier to notate.Remark. In fact, the converse is true as well. See [15].Lemma 2.7. If A is an (n � n) circulant matrix, i.e., a0, a1, : : : , an�1 arearbitrary numbers and A = (aj�i mod n)i;j2f0;1;:::;n�1g, thendet(�I�A) = Y!:!n=1(�� n�1Xi=0 ai!i);where ! runs through all nth roots of unity.Proof. This will be shown in Section 3, using the concept of automorphismsof a graph.We are now able to exploit known relations for the adjacency matrix of graphs:Lemma 2.8. For the complement G of a graph G, the direct sum uni=1Gi andthe complete product 5ni=1Gi of graphs Gi, i = 1; 2; : : : ; n, we have the followingrelations: CG(�) = (�1)p ��� pCG(p� �);Cuni=1Gi(�) = nYi=1CGi(�);C5ni=1Gi(�) = �(�� p)n�1 nYi=1 CGi(�� p+ pi)�� p+ pi :



2. SPECTRA OF GRAPHS 67Remark. The proofs are taken from [15].Proof. For the direct sum G1 uG2 of two graphs G1 and G2 we haveCG1uG2 = �CG1 00 CG2� :From the Laplacian development of the determinant, the statement follows.For the complementary graph G of a graph G we haveCG(�) = det ��I� (p� 1)I+D+ J� I�A�= det �(�� p)I+ J+D�A�:Adding all rows except the �rst to the �rst row of the determinant, every entry ofthe �rst row becomes equal to �. Taking this factor out and then subtracting the�rst row from all other rows, we obtainCG(�) = �det� 1 : : : 1�(�� p)I+D�A�1c� ;where (X)1c denotes the submatrix obtained from X by deleting its �rst row. Onthe other hand, we havedet �(�� p)I+D�A� = (�1)pCG(p� �):Again, adding all other rows to the �rst row, every entry of the �rst row becomesequal to �� p. Taking this factor out, we obtain the required resultCG(�) = (�1)p ��� pCG(p� �):Now the formula for C5ni=1Gi(�) follows very easily from the fact that 5ni=1Gi =uni=1Gi: C5ni=1Gi(�) = Cuni=1Gi(�)= (�1)p ��� pCuni=1Gi(p� �)= (�1)p ��� p nYi=1CGi(p� �)= (�1)p ��� p nYi=1(�1)pi p� �p� �� piCGi(pi � p+ �)= �(�� p)n�1 nYi=1 CGi(�� p+ pi)�� p+ pi :Example 2.9. The complete multipartite graph Kp1;p2;:::;pn can be expressed asthe complete product of the graphs Op1 ; Op2 ; : : : Opn , where Op denotes the graph



2. SPECTRA OF GRAPHS 68consisting of p isolated vertices. Op again is the direct sum of p copies of a singlevertex. Hence, COp(�) = �p andCKp1;p2;:::;pn (�) = �(�� p)n�1 nYi=1(�� p+ pi)pi�1:Therefore, by Theorem 2.3 we havet(Kp1;p2;:::;pn) = (�1)p�1p C 0Kp1;p2;:::;pn (�)����=0= (�1)p�1p (�� p)n�1 nYi=1(�� p+ pi)pi�1������=0= pn�2 nYi=1(p� pi)pi�1:Before we give some more examples, we need to calculate the spectra of twovery simple graphs, the path Pp and the circle Cp. For doing this, it will be helpfulto recall some properties of the well-known Chebyshev polynomials. We will thensee the reason for the close connection between certain spanning tree formulas andChebyshev polynomials.Remark. The Chebyshev polynomials of the �rst kind are de�ned as Tn(x) =cos(n arccos x). It can be shown thatTn(x) = 12��x+px2 � 1�n + �x�px2 � 1�n�and Tn(x) = (�1)nTn(�x):Similarly, the Chebyshev polynomials of the second kind are de�ned as Un(x) =sin((n+1) arccosx)sin(arccos x) . We can calculate its zeros and obtainUn(x) = 2n nYk=1�x� cos k�n+ 1� :It can be shown, thatUn(x) =8>>>><>>>>: 12px2�1��x+px2 � 1�n+1 � �x�px2 � 1�n+1�for jxj 6= 1(sgn x)n(n+ 1) for x = �1and Un(x) = (�1)nUn(�x):Furthermore, they satisfy the recursionUn(x) = 2xUn�1(x)� Un�2(x):



2. SPECTRA OF GRAPHS 69Lemma 2.10. The ordinary, the C-characteristic and the Q-characteristic poly-nomials of the path Pp arePPp(�) = Up��2� ; CPp(�) = �Up�1��� 22 �and QPp(�) = �2 � 12p�2 Up�2(�):The ordinary, the C-characteristic and the Q-characteristic polynomials of the circleCp arePCp(�) = 2�Tp��2�� 1� ; CCp(�) = 2�Tp��� 22 �� (�1)p�and QCp(�) = 12p�1 (Tp(�)� 1) :respectively.Proof. Let Ap denote the (p� p) matrix0BBBBBBBBBB@
�� 2 1 0 : : : : : : : : 01 �� 2 1 00 .... . .... 00 1 �� 2 10 : : : : : : : : 0 1 �� 1

1CCCCCCCCCCA :
We adopt the convention A1 = (� � 1). Then, for p > 1, by Lemma 2.4 CPp(�)equals det0BBBBB@�� 1 1 0 : : : 010 Ap�1...0

1CCCCCA = (�� 1) detAp�1 � detAp�2:By the Laplacian development we getdetAp = (�� 2) detAp�1 � detAp�2:Clearly, CPp(�) satis�es the same recursion, with initial conditions CP2(�) = �(��2)and CP3(�) = �(�� 1)(�� 3). By the remark above we haveCPp(�) = �Up�1(�� 22 ):



2. SPECTRA OF GRAPHS 70The statements concerning the ordinary and the Q-characteristic polynomials arededuced similarly.The circle Cp has a so called `circulant' matrix as its adjacency matrix. Em-ploying Lemma 2.7 we can calculate its eigenvalues: The �rst row of the adjacencymatrix ACp of the circle is (0; 1; 0; : : : ; 0; 1). Hence, applying the lemma we obtainPCp(�) = pYk=1(�� ! � !�1)= pYk=1(�� 2 cos 2k�p );where ! is a pth root of unity. As the circle is a regular graph, using Remark 2we immediately deduce the expressions for the C- and Q-characteristic polynomial.Now we can easily compute the number of spanning trees of the fan and thewheel:Example 2.11. The fan Fn is the complete product of a single vertex and thepath Pn. Thus, by Lemma 2.8 and Lemma 2.10CK15Pn(�) = �(�� n� 1)CK1(�� n)�� n CPn(�� 1)�� 1= �(�� n� 1)�� 1 CPn(�� 1)= �(�� n� 1)�� 1 (�� 1)Un��� 32 �= �(�� n� 1)Un��� 32 � :Using Theorem 2.3 we �nally gett(Fn) = Un(32)= 1p5 " 3 +p52 !n � 3�p52 !n# :Example 2.12. The wheel Wn is the complete product of a single vertex andthe circle Cn. Thus, as before, we haveCK15Cn(�) = �(�� n� 1)CK1(�� n)�� n CCn(�� 1)�� 1= �(�� n� 1)�� 1 CCn(�� 1)= �(�� n� 1)�� 1 2 Tp��� 32 �� (�1)n!:



2. SPECTRA OF GRAPHS 71Finally we get t(Wn) = 2 Tn�32�� 1!=  3 +p52 !n + 3�p52 !n � 2:Using the remark after the proof of Theorem 2.3 we can give even easier proofsfor more general results:Example 2.13. Let F kn be the graph obtained from Fn by replacing each edgeon the rim by a path consisting of k edges. Its dual (F kn )� is nearly (2 + k)-regularand, if r denotes the exceptional vertex, (F kn )���rc is the path on n�1 vertices. Hencet(F kn ) = PPn�1(2 + k) = Un�1�k + 22 � :Example 2.14. Similarly, let W kn be the graph obtained from Wn by replacingeach edge on the rim by a path consisting of k edges. Its dual (W kn )� is nearly(2 + k)-regular and, if r denotes the exceptional vertex, (W kn )���rc is the circle on nvertices. Hence t(W kn ) = PCn(2 + k) = 2�Tn�k + 22 �� 1� :Lemma 2.15. Let G be an r-regular graph. Then its line graph L(G) is 2(r�1)-regular and its characteristic polynomial isPL(G)(�) = (�+ 2)q�pPG(�+ 2� r):If G is semiregular, then its line graph is regular of degree r1 + r2 � 2 and itscharacteristic polynomial isPL(G)(�) = (�+ 2)q�p��1�2� p1�p22 PG(p�1�2);for �i = �+ 2� ri for i = 1, 2.Remark. Note, that the line graph of a graph G is regular, if and only if G isregular or semiregular!Proof. Let B be the incidence matrix of G with all entries made positive. Thenwe can express the adjacency matrix of a graph G and its line graph L(G) in termsof B: AG = BBt �D and AL(G) = BtB� 2I:Now we can calculate the P-spectrum of L(G):PL(G)(�) = det �(�+ 2)Iq �BtB�= (�+ 2)q�p det �(�+ 2)Ip �BBt�= (�+ 2)q�p det ((�+ 2)Ip �AG �DG) :(�)



2. SPECTRA OF GRAPHS 72If G is r-regular, DG = rI, thereforePL(G)(�) = (�+ 2)q�pPG(�+ 2� r):For semiregular graphs we havedet ((�+ 2)Ip �AG �DG) = det�(�+ 2� r1)Ip1 �A�At (�+ 2� r2)Ip2�= det��1Ip1 �A�At �2Ip2�= �1p1 det��2Ip2 � 1�1AtA�= �1p1�p2 det(�1�2Ip2 �AtA), but also= �2p2�p1 det(�1�2Ip1 �AAt):Multiplying the last two lines and taking the square root we getdet �(�+ 2)Ip �AG �DG� =vuut��1�2�p1�p2 det �1�2I��AAt 00 AtA�!;and because of ( 0 AAt 0 )2 = (AAt 00 AtA ) we obtaindet �(�+ 2)Ip �AG �DG� =s��1�2�p1�p2 PG2(�1�2)=s���1�2�p1�p2 PG(p�1�2)PG(�p�1�2):Because the spectrum of a bipartite graph is symmetric by Lemma 2.6, we havedet ((�+ 2)Ip �AG �DG) =s���1�2�p1�p2 (�1)pPG(p�1�2)2= ��1�2� p1�p22 PG(p�1�2):Combining this with Equation (�) we get the desired result.Now we can see how the number of spanning trees of a (semi)regular graph and itsline graph are related to each other:Proposition 2.16. Let G be an r-regular graph. Thent(L(G)) = (2r)q�p+1r2 t(G):



2. SPECTRA OF GRAPHS 73If G is semiregular of degrees r1 and r2 we havet(L(G)) = (r1 + r2)q�p+1r1r2 �r1r2�p2�p1 t(G)Proof. For a r-regular graph G we haveP 0L(G)(�)����=2(r�1) = (�+ 2)q�pP 0G(�)���=2(r�1)= (2r)q�pP 0G(r):By Theorem 2.3 the proposition follows. If G is semiregular, we haveP 0L(G)(�)����=r1+r2�2= (�+ 2)q�p��1�2� p1�p22 �1 + �22p�1�2P 0G(p�1�2)������=r1+r2�2= (r1 + r2)q�p+12pr1r2 �r2r1� p1�p22 P 0G(pr1r2):This proposition leads to a strange proof of Cayley's theorem:Example 2.17. The complete graph Kp is the line graph of the star Sp, whichis semiregular of degrees p and one. Hencet(Kp) = (p+ 1)0p �p1�p�1 = pp�2:We now turn to the so-called NEPS of graphs. For regular graphs, everything isvery easy. In this case, we can use the ordinary spectrum to calculate the numberof spanning trees. Although the following theorem is true for graphs which are notregular as well, it is of no use for our purposes, as it is only valid for the ordinaryspectrum!Theorem 2.18. The NEPS G with basis B of the graphs G1, G2, : : : , Gn,whose adjacency matrices are A1, A2, : : : , An, has adjacency matrixA = X�2BA�11 
 � � � 
A�nn :Suppose that the graph Gi has pi vertices and its (ordinary) spectrum is �i1; : : : ; �ipifor i = 1; 2; : : : ; n. Then the spectrum of the NEPS G consists of all possible valuesof �i1;i2;:::;in, where �i1;i2;:::;in = X�2B��11i1 : : : ��nninfor ik = 1; 2; : : : ; pk and k = 1; 2; : : : ; n.



2. SPECTRA OF GRAPHS 74Proof. The entries of A areA(u1;u2;:::;un)(v1;v2;:::;vn) = X�2B(A�11 )u1v1 � � � (A�nn )unvn :Hence, the vertices (u1; u2; : : : ; un) and (v1; v2; : : : ; vn) of G are connected if and onlyif there is a � 2 B so that (A�ii )uivi 6= 0 for all i 2 f1; 2; : : : ; ng. This is preciselythe de�nition of the NEPS.We can now prove the statement about the eigenvalues of the NEPS G: SinceAi, the adjacency matrix of Gi, is normal, there are linearly independent vectors xijsuch that Aixij = �ijxij for i = 1; 2; : : : ; n and j = 1; 2; : : : ; pi. Consider the vectorx = x1i1 
 � � � 
xnin . Using the fact that (A
B) � (C
D) = (AC)
 (BD) we getAx = X�2B(A�11 
 � � � 
A�nn )x= X�2B(A�11 x1i1)
 � � � 
 (A�nn xnin)= X�2B(��11i1x1i1)
 � � � 
 (��nninxnin)= �i1;i2;:::;inx:This yields p1p2 : : : pn eigenvectors. As A has dimension p1p2 : : : pn, a basis of eigen-vectors has been determined.Unfortunately, for NEPS of graphs which are not regular, we can not apply thepreceding theorem to �nd their eigenvalues. Only for two special cases we can �ndworkarounds:The Kronecker sum G � H of two graphs G and H with pG and pH vertices,respectively, is represented by the NEPS with basis f(1; 0); (0; 1)g. Hence, its adja-cency matrix and its degree matrix areAG�H = AG 
 IpH + IpG 
AH ;DG�H = DG 
 IpH + IpG 
DH :Therefore,CG�H(�) = det(�I�DG�H +AG�H)= det(�I�DG 
 IpH � IpG 
DH +AG 
 IpH + IpG 
AH)= det(�I� (DG �AG)
 IpH � IpG 
DH �AH):Hence, by the theorem above, the C-eigenvalues of G �H are all possible sums ofa C-eigenvalue of G with a C-eigenvalue of H. In fact, the Kronecker sum of twographs is essentially unchanged when loops are added to some to some of the vertices:Loops in G or H are transformed into loops of G�H. Hence, we may `regularise' Gand H as described after Theorem 2.3, by adding an appropriate number of loops.Then we can use Theorem 2.18 directly.



2. SPECTRA OF GRAPHS 75Example 2.19. The (l �m) square lattice is the Kronecker sum of two pathsPl and Pm. Therefore we havet(Pl � Pm) = 1lm Yj2f1;2;:::;lgk2f1;2;:::;mg(j;k)6=(l;m)  4 + 2�cos �jl + cos �km �!:This does not look very nice, but at least we get a nice formula for the ladderLn = P2 � Pn:t(P2 � Pn) = 12n Yk2f1;2;:::;n�1g�2 + 2 cos �kn � Yk2f1;2;:::;ng�4 + 2 cos �kn �= 22nUn�1(�1)Un�1(�2)= Un�1(2)= 12p3 h�2 +p3�n � �2�p3�ni :By very similar calculations it can be shown that the number of spanning trees ofthe complete prism Kn � Pm equalst(Kn � Pm) = nn�2�Um�1�n+ 22 ��n�1 ;and the number of spanning trees of the complete cyclic prism Kn � Cm equalst(Kn � Cm) = m2n�1n �Tm�n+ 22 �� 1�n�1 :The Kronecker product G
H of graphs G and H is represented by the NEPSwith basis f(1; 1)g. Its adjacency matrix and its degree matrix areAG
H = AG 
AH ;DG
H = DG 
DH :It turns out that, this time, the Q-spectrum is the right choice, as we haveQG
H(�) = det ��I�D�1G
HAG
H�= det ��I� (D�1G 
D�1H )(AG 
AH)�= det ��I� (D�1G AG)
 (D�1H AH)� :Hence, by Theorem 2.18, the Q-eigenvalues of G
H are all possible products of aQ-eigenvalue of G with a Q-eigenvalue of H. Note, that loops in G or H do a�ectthe Kronecker product G
H!Chow [12] used this fact to prove an interesting theorem about the Kroneckerproduct of bipartite graphs. Before proving his result, we need the following lemma:



2. SPECTRA OF GRAPHS 76Lemma 2.20. Let A1, A2, : : : , An be matrices whose column sums are nonzero.Then, for the stochasticization of the tensor product of these matrices we haveQ nOi=1 Ai! = nOi=1 Q (Ai) :Proof. We haveQ nOi=1 Ai! =  nOi=1 D�1i ! nOi=1 Ai! = nOi=1 �D�1i Ai� = nOi=1 Q (Ai) ;where Di is the degree matrix of the graph represented by Ai.Theorem 2.21. Let G1, G2, : : : , Gn be connected bipartite weighted (di)graphs.Then G =Nni=1Gi has 2n�1 connected components, each of which is also a connectedbipartite weighted (di)graph. The Q-spectra of the connected components are allequal, up to the multiplicity of the eigenvalue zero.Proof. For i 2 f1; 2; : : : ; ng, the adjacency matrix of Gi can be written asAGi = ( 0 A(0)iA(1)i 0 ). (Note that the adjacency matrix of a digraph need not besymmetric.) By reordering the vertices of the Kronecker product G we �nd that itsadjacency matrix can be represented byAG = 0BBBB@ . . .Nni=1A(�i)i. . .
1CCCCA ;where �i can be either zero or one, and � runs through all 2n possible combinations.For example, for n = 2 we get0BBB@ 0 A(0)1 
A(0)2A(0)1 
A(1)2 00 A(1)1 
A(0)2A(1)1 
A(1)2 0 1CCCA :Hence, for the component of G corresponding to � we haveAH� =  0 Nni=1A(�i)iNni=1A(1��i)i 0 !



2. SPECTRA OF GRAPHS 77Now we can compute the Q-characteristic polynomials of the components of G:QH�(�) = det ��I�Q(AH� )�= det0@�I�0@ 0 Q�Nni=1A(�i)i �Q�Nni=1A(1��i)i � 0 1A1A= �k det �I� 1�Q nOi=1 A(�i)i !Q nOi=1 A(1��i)i !!= �k�l det �I� nOi=1 Q�A(�i)i � nOi=1 Q�A(1��i)i �!= �k�l det �I� nOi=1 Q�A(�i)i �Q�A(1��i)i �! :By Lemma 2.5, the spectra of the matricesQ�A(�i)i �Q�A(1��i)i � and Q�A(1��i)i �Q�A(�i)i �are equal up to the multiplicity of the eigenvalue zero. To conclude the proof, notethat by Theorem 2.18 the spectrum of a Kronecker product consists of all possibleproducts of eigenvalues of its factors counting multiplicities.For n = 2, this theorem provides a simple relation between the spanning trees of thetwo connected components of G1 
G2:Corollary 2.22. Let G1 = (X1; Y1) and G2 = (X2; Y2) be weighted bipartitegraphs. (In fact, one of them can even be a digraph.) Let H1 = (X1 �X2; Y1 � Y2)and H2 = (X1 � Y2; Y1 �X2) be the two connected components of G1 
G2. Thent(H1)t(H2) =  Qv2X1 d(v)Qv2Y1 d(v)!jX2j�jY2j Qv2X2 d(v)Qv2Y2 d(v)!jX1j�jY1jProof. Suppose that G2 has symmetric adjacency matrix. Then any edge ofG = G1 
G2 has weight(AG)(ux;vy) = (AG1)(u;v)(AG2)(x;y)= (AG1)(u;v)(AG2)(y;x)= (AG)(uy;vx);hence the bijection between the edges of H1 and H2 that sends (ux; vy) to (uy; vx)is weight-preserving. Therefore, the sums of the edge-weights are the same in H1and H2. By Theorem 2.3, (4) we gett(H1)� Yv2V(H2) dv�� Y�6=1Q-eigenvalue of H2(1� �)� = t(H2)� Yv2V(H1) dv�� Y�6=1Q-eigenvalue of H1(1� �)�:



3. AUTOMORPHISMS ON GRAPHS 78By Theorem 2.21, the Q-eigenvalues ofH1 andH2 are the same up to the multiplicityof the eigenvalue zero. Hence we are left witht(H1)� Yv2V(H2) dv�= t(H2)� Yv2V(H1) dv�:By the de�nition of the Kronecker product we �nd that the product of the degreesof the vertices in H1 is� Yv2X1 dv�jX2j� Yv2X2 dv�jX1j�Yv2Y1 dv�jY2j�Yv2Y2 dv�jY1j;and the product of the degrees of the vertices in H2 is� Yv2X1 dv�jY2j�Yv2Y2 dv�jX1j�Yv2Y1 dv�jX2j� Yv2X2 dv�jY1j:This concludes the proof.This corollary yields some rather nice proportions. For instance:Example 2.23. The even and odd Aztec rectangles are the components of thegraph P2n+1
P2m+1. Therefore, the even Aztec rectangle has exactly four times asmany spanning trees as the odd Aztec rectangle.3. Automorphisms on GraphsOften we want to determine the number of spanning trees of graphs with ahigh degree of symmetry. For such graphs, the method presented in this section isappropriate.Definition 3.1. An automorphism T on a (di)graph G is a permutation of automorphismthe vertices of G which leaves their incidence relation invariant: (u; v) 2 E(G) ,(Tu;Tv) 2 E(G). Equivalently, the matrix representing the automorphism and theadjacency matrix of the graph commute. In the following, we will use the notationT both for the permutation and its matrix.The following well known lemma leads us directly towards a method for countingthe spanning trees of graphs which possess an automorphism with large orbits:Lemma 3.2. Let A and B be real matrices which can be diagonalised. Then Aand B have a common basis of eigenvectors if and only if they commute.Proof. Let � be an eigenvalue of A with multiplicity k. Consider a basis ofeigenvectors fx1;x2; : : : ;xkg associated with �. Let x be an eigenvector of A. ThenA(Bx) = BAx = B�x = �(Bx):Thus, for every eigenvector x of A, the vector Bx is also an eigenvector of A. Hence,Bx must be a linear combination of the xi's, i 2 f1; 2; : : : ; kg. ThereforeBxi = kXj=1 cijxj :



3. AUTOMORPHISMS ON GRAPHS 79Now consider the e�ect of B on a linear combination Pkj=1 aixi:B� kXj=1 aixi� = kXi=1 ai kXj=1 cijxj = kXj=1� kXi=1 aicij�xjThis implies, that Pkj=1 aixi is an eigenvector of B if and only ifkXi=1 aicij = �aj for j 2 f1; 2; : : : ; kgor equivalently, if Ca = �a:Two linear combinations Pkj=1 aixi and Pkj=1 a0ixi are linearly independent if andonly if a and a0 are linearly independent. Therefore we need k linearly independenteigenvectors of C. These exist if and only if C can be diagonalised. Because ofBT = T�C 00 C0� ;it follows that C can be diagonalised if and only if B can be diagonalised.Let G be a graph with vertices 1, 2, : : : , p. Consider an automorphism T ofG and let x = (a1; a2; : : : ; ap) be an eigenvector T with corresponding eigenvalue !.Clearly, !x = Tx = (aT1; aT2; : : : ; aTp)t:Hence, ai = 1!aTi, aTi = 1!aT2i, : : : , aTk1�1i = 1!ai for all vertices i, where ki isthe length of the orbit the vertex belongs to. It follows that ai = 1!ki ai. Therefore,whenever ai 6= 0, we have !ki = 1.Summarizing, after rearranging the vertices of G, we see that the eigenvectorsof T can be chosen to be of the formx = (a1; a1!; : : : ; a1!k1�1; : : : ; an; an!; : : : ; an!kn�1)t;where !ki = 1 for ai 6= 0, and n is the number of orbits of T. Because of the lemmaabove, for all of the matrices A, (D �A) and D�1=2AD�1=2, there exists a basisof eigenvectors which is also a basis of eigenvectors of T and whose elements are ofthe form displayed above.Now we can easily derive the characteristic polynomial of the graph by solvingits characteristic equation for a1, a2, : : : , an, i.e.�x = 8><>:Ax; for obtaining the ordinary spectrum(D�A)x; for obtaining the C-spectrumD�1=2AD�1=2x; for obtaining the Q-spectrumand so on. Note that, if T is an automorphism of G, the matrices D and T commuteas well.Now we see that Lemma 2.7 stated in Section 2 is an almost trivial consequenceof the preceding paragraphs:



4. RESTRICTION OF INFINITE GRAPHS 80Lemma 3.3. If A is an (n � n) circulant matrix, i.e., a0, a1, : : : , an�1 arearbitrary numbers and A = (aj�i mod n)i;j2f0;1;:::;n�1g, thendet(�I�A) = Y!n=1(�� n�1Xi=0 ai!i);where ! runs through all nth roots of unity.Proof. Just note that T = (1 2 : : : p) is an automorphism of A.Remark. The distance of two vertices u and v is the length of the shortest pathjoining u and v. A graph is called distance-regular, if there are integers bi and ci(i � 0), such that for any two vertices u and v at distance i, there are precisely cineighbours of u at distance i� 1 to v and bi neighbours of u at distance i+ 1 to v.Distance-regular graphs have `large' automorphism-groups. For some specialfamilies of such graphs the eigenvalues can be computed using this properties. See,for example, [8], Theorem 8.3.1.4. Restriction of In�nite GraphsIn this section we will exploit the fact that the eigenfunctions of the in�nitegrid-graph are known and can be used to guess the eigenvectors of �nite subgraphsof the in�nite grid-graph. This is an idea of Kenyon, Propp and Wilson, see [23].Consider the in�nite grid-graph Z2 = Z� Z. We can identify a vertex with apair of integers, with (0; 0) as origin. Sometimes though it will be convenient tospecify a di�erent origin, usually (12 ; 12). In any case, two vertices (u; v) and (x; y)are connected by an edge if and only if ju� xj = 1 and jv � yj = 0 or ju� xj = 0 andjv � yj = 1. Clearly, the Laplacian operator, i.e., the operator which maps (x; x) tothe degree of vertex x and (x; y) to the weight of the edge (x; y), isCZ2 : C(Z2)! C(Z2)f(x; y) 7! 4f(x; y) + f(x� 1; y) + f(x+ 1; y) + f(x; y � 1) + f(x; y + 1)An eigenfunction of CZ2 must satisfyCZ2(f) = �f:Such an eigenfunction can be constructed for each pair of complex numbers � and� by putting f(x; y) = �x�y and � = 4� � � ��1 � � � ��1.Now consider a �nite subgraph G of Z2. Select eigenfunctions of Z2 which satisfythe following additional boundary conditions: For all edges (u; v) of Z2, where u isa vertex of G but v is not, we require f(u) = f(v). By checking the equationCG(f jV(G)) = � f jV(G), where C is the Laplacian matrix of G, we see that therestriction to the vertices of G of an eigenfunction of the graph Z2, which satis�esthe condition above, is an eigenfunction of CG, too.We can allow one exceptional vertex r, so that Gnr is a restriction of Z2. In thiscase we require that f(x; y) = 0 for all (x; y) 2 Z2 that have distance one to somevertex of G n r embedded in Z2. It is probably best to imagine r drawn as remarkedin Section 1 of Chapter 3, an example is given in Figure 2 in this section.



4. RESTRICTION OF INFINITE GRAPHS 81As an algorithmic procedure for �nding the eigenvectors is not available, we haveto rely on our intuition: Depending on the shape of G we may set f(x; y) = g(x)h(y)for rectangular regions or f(x; y) = g(x + y)h(x � y) for diamond-shaped regions,where g and h are any of x 7! sin(�x) or x 7! cos(�x). For more complicatedregions, we need to try sums of these functions.Example 4.1. Consider the l �m grid Pl � Pm. An example of this graph isdepicted in Figure 5 in Chapter 2, Section 2 on page 16. We set f(x; y) = g(x)h(y).Let (xmin; ymin) be the lower left corner of the graph, similarly, let (xmax; ymax) be itsupper right corner. The boundary conditions force g to satisfy g(xmin�1) = g(xmin)and h(ymin� 1) = h(ymin), hence it will be best to set (xmin; ymin) to (12 ; 12) and setg(x) = cos(�x) and h(y) = cos(�y). Furthermore, we have g(xmax) = g(xmax + 1)and h(ymax) = h(ymax + 1), where xmax = l � 12 and ymax = m � 12 . We arrive atthe equations cos���l � 12��� cos���l + 12�� = 0 andcos�� �m� 12��� cos���m+ 12�� = 0:From this we obtain � = jl � and � = km� for integers j and k. Summarizing, we geteigenfunctions fj;k(x; y) = cos �jxl cos �kym ;where x runs from 12 to l � 12 by integer steps and y from 12 to m � 12 by integersteps, j 2 f0; 1; : : : ; l � 1g and k 2 f0; 1; : : : ;m� 1g. The eigenvalue correspondingto fj;k is 4 � 2 cos �jl � 2 cos �km , which is zero for j = k = 0. Hence, the number ofspanning trees ist(Pl � Pm) = 1lm Yj2f0;1;:::;l�1gk2f0;1;:::;m�1g(j;k)6=(0;0) �4� 2�cos �jl + cos �km �� :Using the dual graph we can compute the number of spanning trees in a di�erentway: For the dual graph, the boundary conditions demand that g(xmin) = h(ymin) =0. Hence, it makes sense to put (xmin; ymin) = (0; 0) and g(x) = sin(�x), h(y) =sin(�y). Furthermore, it is required that g(xmax) = h(ymax) = 0, which results in� = jl � and � = km�. Therefore, the eigenvectors of (Pl � Pm)� arefj;k(x; y) = sin �jxl sin �kym ;where x runs from 0 to l by integer steps and y from 0 to m by integer steps,j 2 f1; 2; : : : ; l � 1g and k 2 f1; 2; : : : ;m� 1g. The eigenvalues are the same asabove. Hence, the number of spanning trees ist(Pl � Pm) = Yj2f1;2;:::;l�1gk2f1;2;:::;m�1g�4� 2�cos �jl + cos �km �� :
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Figure 2. A grid with an extra vertexThe equivalence of these two formulas follows from the well-known identity for l =Ql�1j=1 �2� 2 cos �jl �.Example 4.2. Consider the graph (Pl � Pm)0 resulting from Pl � Pm by at-taching an extra vertex r which is joined to all vertices (xmax; y) and (x; ymax),when (xmax; ymax) denotes the upper right vertex of Pl � Pm. Note that there aretwo edges joining r and (xmax; ymax). An example is depicted in Figure 2. Againwe put f(x; y) = g(x)h(y). Let (xmin; ymin) denote the lower left corner of thegraph. Then the boundary conditions require that g(xmin) = g(xmin + 1) andh(ymin) = h(ymin + 1), hence we set (xmin; ymin) to (12 ; 12 ) and put g(x) = cos(�x)and h(y) = cos(�y). Furthermore, we want g(xmax + 1) = 0 and h(ymax + 1) = 0,where xmax = l � 12 and ymax = m� 12 . Therefore,cos���l + 12�� = 0 andcos���m+ 12�� = 0;which results in � = 2j+12l+1 � and � = 2j+12m+1�. Putting the pieces together we getfj;k(x; y) = cos �(2j + 1)x2l + 1 cos �(2k + 1)y2m+ 1 ;where x runs from 12 to l + 12 by integer steps and y from 12 to m + 12 by integersteps, j 2 f0; 1; : : : ; l � 1g and k 2 f0; 1; : : : ;m� 1g. The eigenvalue correspondingto fj;k is 4 � 2 cos �(2j+1)2l+1 � 2 cos �(2k+1)2m+1 , which is zero for j = l or k = m. Hence,the number of spanning trees ist((Pl � Pm)0) = Yj2f0;1;:::;l�1gk2f0;1;:::;m�1g�4� 2�cos �(2j + 1)2l + 1 + cos �(2k + 1)2m+ 1 �� :Again it is also possible to compute the number of spanning trees using the dualgraph of (Pl � Pm)0.
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b(xmin; ymin)Figure 3. The dual of ER4;3Example 4.3. The graph Pl
Pm consists of two components, known as the evenand odd Aztec rectangles. See Section 2 in Chapter 2 for an exact de�nition. InFigures 10 and 11 on page 6 the two components of P5
P3 are depicted. It seems tobe di�cult to compute their eigenvalues directly, but it is easy to �nd the eigenvaluesof their duals. As the regions are diamond-shaped, we put f(x; y) = g(x+y)h(x�y).First, consider the dual of the even Aztec diamond. We set (xmin; ymin) as indicatedin Figure 3 by a gray dot.The boundary conditions require that the following equations are satis�ed:f(xmin + k; ymin + k) =g(xmin + ymin + 2k)h(xmin � ymin) = 0f(xmin � k; ymin + k) =g(xmin + ymin)h(xmin � ymin � 2k) = 0f(xmin �m+ k; ymin +m+ k) =g(xmin + ymin + 2k)h(xmin � ymin � 2m) = 0f(xmin + l � k; ymin + l + k) =g(xmin + ymin � 2l)h(xmin � ymin � 2k) = 0;where k is an appropriate integer.When we set g(z) = sin(�z) and h(z) = sin(�z), and (xmin; ymin) to (0; 0), the�rst two equations are satis�ed. Furthermore, we want g(xmin + ymin� 2l) = 0 andh(xmin � ymin + 2m) = 0. Therefore,sin(�(2l)) = 0 andsin(�(�2m)) = 0;which results in � = j2l� and � = k2m�. Putting the pieces together we getfj;k(x; y) = sin �j(x+ y)2l sin �k(x� y)2m ;
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bb(xmin; ymin)Figure 5The dual of the triangle T5where x 2 [�m; l] and y 2 [0; l+m], with 0 � x+ y � 2l and 0 � y� x � 2m. Notethat fj;k(x; y) = f2l�j;2m�k(x; y). Hence, j runs from 1 to 2l � 1 and k runs from 1to m when j � l, from 1 to m� 1 otherwise. The eigenvalue corresponding to fj;kis 4� 4 cos �j2l cos �k2m . Hence, the number of spanning trees ist(ERl;m) = Y(j;k)2[1;2l�1]�[1;m�1][[1;l]�fmg�4� 4 cos �j2l cos �k2m� :For the odd Aztec rectangle, all of the above goes through unchanged, exceptthat x 2 [�m� 12 ; l+ 12 ] and y 2 [�12 ; l+m+ 12 ]. Furthermore, fl;m is no longer aneigenvector, as it is the zero vector. Thus, for arbitrary l and m, the even Aztec rec-tangle has exactly 4 times as many spanning trees as the odd Aztec rectangle. Thiscan be also shown using the Q-spectrum of the graph, as in Section 2, Example 2.23.Example 4.4. Consider the triangular graph Tm, which is depicted in Figure 4for m = 5. Again it seems to be di�cult to compute its eigenvalues directly, but itis possible to �nd the eigenvalues of its dual. Let (xmin; ymin) the lower left cornerof T �m as indicated in Figure 5, and set (xmax; ymax) = (xmin +m; ymin +m).The boundary conditions force f to satisfy f(x; ymin) = 0, f(xmax; y) = 0,and f(xmin + k; ymin + k) = 0. We set (xmin; ymin) to (0; 0) and put f(x; y) =g1(x)h1(y) + g2(x)h2(y). The �rst condition suggests that h1(y) = sin(�y) andh2(y) = sin(�y), the second suggests g1(x) = sin �jm and g2(x) = sin �km . Nowf(x; x) = 0 requires that � = �km and � = ��jm . We therefore obtainfj;k(x; y) = sin �jxm sin �kym � sin �kxm sin �jym ;where 0 � y � x � m and 0 < j < k < m. The eigenvalue corresponding to fj;k is4� 2 cos �jm � 2 cos �km . Hence, the number of spanning trees ist(Tm) = Y0<j<k<m�4� 2 cos �jm � 2 cos �km � :
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